Precast Concrete Coupled Shear Wall System of Modular High-rises Without In Situ Cores

Author(s):  
Wei Pan ◽  
Zhen Wang
Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 20-41
Author(s):  
Molham Salameh ◽  
Mohsenali Shayanfar ◽  
Mohammad Ali Barkhordari

2012 ◽  
Vol 39 (6) ◽  
pp. 631-642 ◽  
Author(s):  
Natthapong Areemit ◽  
Michael Montgomery ◽  
Constantin Christopoulos ◽  
Agha Hasan

As high-rise buildings increase with height and slenderness, they become increasingly sensitive to dynamic vibrations, and therefore the natural frequency of vibration and damping ratio are very important design parameters, as they directly impact the design wind forces. Recent advances in sensing and computing technology have made it possible to monitor the dynamic behaviour of full-scale structures, which was not possible in the past. Full-scale validation of the dynamic properties is useful for high-rise designers to verify design assumptions, especially since recent measurements have shown that damping decreases as the height of the building increases, and in situ damping measurements have been lower than many currently assumed design values, potentially leading to unconservative designs. A 50-storey residential building in downtown Toronto, with a reinforced concrete coupled shear wall lateral load resisting system with outriggers was monitored using current state-of-the-art sensing technologies and techniques to determine, in situ, the dynamic properties under real wind loads. The in situ measurements were then compared with results obtained using current state-of-the-art computer modelling techniques.


2014 ◽  
Vol 1079-1080 ◽  
pp. 354-358 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo ◽  
Zhong Yuan Zhang

This paper describes an ongoing research program on the seismic resistance performance of the double-wall precast concrete (DWPC) shear wall. Low-cyclic reversed loading test of three new full scale specimens are carried out based on the previous studies. The test results indicate that DWPC shear walls have higher initial stiffness, cracking load, yielding load and ultimate load. The displacement ductility ratios of DWPC shear walls are no less than that of cast-in-situ shear wall. The hysteretic curves of all specimens are plump, and the trend of skeleton curves is basically the same. The seismic energy dissipation capacities of DWPC specimens are close to those of cast-in-situ specimen. All the specimens have shown favorable seismic resistance performance.


2013 ◽  
Vol 351-352 ◽  
pp. 734-737
Author(s):  
Wan Shin Park ◽  
Young Soo Chun ◽  
Hyun Do Yun ◽  
Soo Yeon Seo ◽  
Jin Kyu Song ◽  
...  

This paper addresses the seismic behavior of coupling beams with headed reinforcing bars in coupled shear wall system. Test variable included the replacement ratios of headed reinforcing bars. The results show that Specimen HB 50 exhibits a better stable behavior in comparison with Specimens Specimen CON and Specimen HB 30. Test results showed that the amount of diagonal reinforcing bars in the coupling beam may be reduced when headed reinforcing bars are utilized.


2013 ◽  
Vol 671-674 ◽  
pp. 1315-1318
Author(s):  
Qing Xuan Shi ◽  
Jian Bo Tian ◽  
Kun Li ◽  
Zhi Feng Guo

Coupling beams of coupled shear wall system in seismic regions are required to have high load resisting capacity and excellent ductility and energy-dissipation capacity. To achieve this goal, the concept of steel-concrete composite coupling beam is proposed. The steel-concrete composite coupling beam is a new form and worthwhile to research and promote. Further, it is a new direction for the future development of the coupling beam. But there is a lack of specific calculation method and constructional measures in the current related codes. In this paper, the review of available literatures is made including the experimental study and influence factors of mechanical behavior. It works that have not yet been covered after summarizing each research methods and research contents, which will provide scientific reference material for the intensive research on steel-concrete composite coupling beam.


Sign in / Sign up

Export Citation Format

Share Document