Biodegradation of Chitin Extracted from Labeo catla Fish Scales and Production of Chitooligosaccharides by Novel Chitinolytic Bacteria Streptomyces chilikensis RC1830

Author(s):  
Himadri Tanaya Behera ◽  
Abhik Mojumdar ◽  
Smruti Ranjan Das ◽  
Lopamudra Ray
Author(s):  
Edward D. DeLamater ◽  
Walter R. Courtenay ◽  
Cecil Whitaker

Comparative scanning electron microscopy studies of fish scales of different orders, families, genera and species within genera have demonstrated differences which warrant elaboration. These differences in detail appear to be sufficient to act as “fingerprints”, at least, for family differences. To date, the lateral line scales have been primarily studied. These demonstrate differences in the lateral line canals; the pattern of ridging with or without secondary protuberances along the edges; the pattern of spines or their absence on the anterior border of the scales; the presence or absence of single or multiple holes on the ventral and dorsal sides of the lateral line canal covers. The distances between the ridges in the pattern appear likewise to be important.A statement of fish scale structure and a comparison of family and species differences will be presented.The authors wish to thank Dr. Donald Marzalek and Mr. Wallace Charm of the Marine and Atmospheric Laboratory of the University of Miami and Dr. Sheldon Moll and Dr. Richard Turnage of AMR for their exhaustive help in these preliminary studies.


Author(s):  
M.E. Lee ◽  
A. Moller ◽  
P.S.O. Fouche ◽  
I.G Gaigher

Scanning electron microscopy of fish scales has facilitated the application of micro-structures to systematics. Electron microscopy studies have added more information on the structure of the scale and the associated cells, many problems still remain unsolved, because of our incomplete knowledge of the process of calcification. One of the main purposes of these studies has been to study the histology, histochemistry, and ultrastructure of both calcified and decalcified scales, and associated cells, and to obtain more information on the mechanism of calcification in the scales. The study of a calcified scale with the electron microscope is complicated by the difficulty in sectioning this material because of the close association of very hard tissue with very soft tissues. Sections often shatter and blemishes are difficult to avoid. Therefore the aim of this study is firstly to develop techniques for the preparation of cross sections of fish scales for scanning electron microscopy and secondly the application of these techniques for the determination of the structures and calcification of fish scales.


1900 ◽  
Vol 49 (1274supp) ◽  
pp. 20418-20419
Keyword(s):  

2018 ◽  
Vol 8 (1) ◽  
pp. 10-15
Author(s):  
S. Kothai ◽  
T. Sobana Premlatha
Keyword(s):  

Author(s):  
Joshua O. Ighalo ◽  
Ibrahim O. Tijani ◽  
Oluwaseun J. Ajala ◽  
Fisayo O. Ayandele ◽  
Omodele A. Eletta ◽  
...  

Background: Modified bio-based adsorbents from plant sources can be used for pollution remediation by adsorption due to their low cost and availability in large quantities. Objective: In this study, the competitive biosorption of Pb(II) and Cu(II) by Micropogonias undulates functionalised fish scales (FFS) was conducted. The functionalisation was done by wet impregnation with Fe2+. Method: The biosorbent was characterised by Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS) and Branueur–Emmett–Teller (BET) analyses. Results: The major constituents in the FFS were calcium and phosphorus from the collagen and apatite on the scales. Optimum removal efficiency for both metals was >99% at 10 g/l dosage. It was observed that the Langmuir isotherm model and the pseudo second order kinetics model were the best fit for the experimental data. The monolayer adsorption capacity of FFS for Pb(II) and Cu(II) was observed to be 96.15 mg/g and 100 mg/g respectively. Conclusion: The study revealed that the competitive biosorption of heavy metals can be achieved (at a good adsorption capacity) using functionalised Micropogonias undulates fish scales.


2020 ◽  
Author(s):  
Rylan Bachman ◽  
◽  
Lisa LaGoo Powell ◽  
Alexander Hastings ◽  
H. Douglas Hanks ◽  
...  

2020 ◽  
Vol 44 (2) ◽  
pp. 29-29
Author(s):  
Laura Villareal
Keyword(s):  

Author(s):  
Abdelmajid Regti ◽  
Zouhair Lakbaibi ◽  
Hicham Ben El Ayouchia ◽  
Mohammadine El Haddad ◽  
My Rachid Laamari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document