A GIS-based analysis of intrinsic vulnerability, pollution load, and function value for the assessment of groundwater pollution and health risk

Author(s):  
Yuanyuan Wang ◽  
Kang Fu ◽  
Han Zhang ◽  
Guangyi He ◽  
Rui Zhao ◽  
...  
2020 ◽  
Vol 10 (2) ◽  
pp. 249-261 ◽  
Author(s):  
Zafar Iqbal Khan ◽  
Ilker Ugulu ◽  
Shagufta Sahira ◽  
Naunain Mehmood ◽  
Kafeel Ahmad ◽  
...  

Abstract In the present study, the effects of untreated wastewater and associated health risks were assessed in an abundantly consumed vegetable, Luffa cylindrica. In this direction, trace metal accumulations in L. cylindrica samples irrigated with three different water regimes (municipal wastewater, groundwater, and canal water) were determined. The metal levels were defined by atomic absorption spectrophotometer equipped with a graphite furnace and D2 corrector. Trace metal concentrations in L. cylindrica samples were in the range of 7.91–9.01, 3.78–4.22, 0.54–0.63, 39.18–43.27, 15.76–20.82, 29.04–42.49, 6.96–8.24, 5.85–7.72, 4.06–4.39 and 0.18–0.42 mg/kg for Mo, As, Se, Fe, Cu, Zn, Ni, Pb, Cd and Co, respectively. The health risk index values of As, Cd, Pb, Mo, Ni, Se and Co; and pollution load index values of As, Mo, Ni, Cu, Cd and Pb were high, indicating possible phytotoxicity. As had the highest value for the pollution load index suggesting high-risk levels. High levels of some metals could be an alarm call for consumers as the vegetable is irrigated with untreated wastewater.


2020 ◽  
Vol 71 (11) ◽  
pp. 30-38
Author(s):  
Kafeel Ahmad ◽  
Nimra Arshad ◽  
Zafar Iqbal Khan ◽  
Humayun Bashir ◽  
Sonaina Nazar ◽  
...  

The increasing pollution in most industrialized area is a really attention seeking issue now a days. Air pollution caused by vehicular smoke contains handsome percentages of heavy metals like cadmium. Cadmium like other heavy metals accumulated in the bodies of living systems found around roads. Among the living system cadmium accumulate up to alarming rate like in soil, plants and animals. Therefore, this study was conducted in order to evaluate the possible risk of the Cadmium on the soil, forage and buffalos. The study was done in the area of Sargodha district, Punjab, Pakistan. There were six sites selected for study on accumulation of Cd in the forages, soil and the Buffalo blood. The Cd content in soil samples was highest in sample collected from site III. The Cd content was highest in the forage sample collected from site IV and in the blood samples, and the bioaccumulation factor was highest in the samples collected from site V. The positive and non-significant correlation was found when soil and forage was correlated, unlike the correlation found between blood and forage which was found negative non-significant. The samples from site III showed high daily intake of metals, health risk index, and pollution load index. This study will bring attention towards the development of the strategies in order to be safe from the toxic effects of cadmium.


Author(s):  
Yixuan Liu ◽  
Shanshan Li ◽  
Chunyuan Sun ◽  
Mengxi Qi ◽  
Xue Yu ◽  
...  

In order to assess the pollution levels and health risks of PM2.5-bound metals in Baoding City before and after the heating period, samples were collected in 2016 at Hebei University from September 25th to November 14th during the non-heating period, and November 15th to December 26th during the heating period, respectively. ICP-MS was applied to analyze seven heavy metals (Cr, Zn, Cu, Pb, Ni, Cd and Fe). The statistical analysis, enrichment factor (EF), pollution load index method, and Risk Assessment Method proposed by U.S. EPA were used to evaluate the non-carcinogenic risks of six of these heavy metals (Cr, Zn, Cu, Pb, Ni and Cd) and carcinogenic risks of three of these heavy metals (Cr, Ni and Cd). The results showed three main results. First, the average daily PM2.5 concentrations of the national air monitoring stations was 155.66 μg·m−3 which was 2.08 times as high as that of the second level criterion in China (75 μg·m−3) during the observation period. Compared with the non-heating period, all heavy metals concentrations increased during heating period. The growth rates of Pb and Ni were the highest and the lowest, which were 88.03 and 5.11 percent, respectively. Second, the results of enrichment factor indicated that the EF values of all heavy metals were higher during the heating period in comparison with during the non-heating period, but the degree of enrichment of all heavy metals remained unchanged. Not only those, Cr and Ni were minimally enriched and were affected by both human and natural factors, Pb, Cu and Zn were significantly enriched and were mainly affected by human factors, the enrichment of Cd was much higher than that of the other heavy metals, exhibiting extremely high enrichment, mainly due to human factors during the whole sampling period. The results of the pollution load index indicated that the proportions of the number of highly and very highly polluted PM2.5-bound metals were the highest during the heating period, while the proportion of moderately polluted PM2.5-bound metals was the highest during the non-heating period. The combined pollution degree of heavy metals was more serious during the heating period. Third, according to the health risk assessment model, we concluded that the non-carcinogenic and carcinogenic risks caused by inhalation exposure were the highest and by dermal exposure were the lowest for all kinds of people. The overall non-carcinogenic risk of heavy metals via inhalation and subsequent ingestion exposure caused significant harm to children during the non-heating and the heating periods, and the risk values were 2.64, 4.47, 1.20 and 1.47, respectively. Pb and Cr exhibited the biggest contributions to the non-carcinogenic risk. All the above non-carcinogenic risks exceeded the standard limits suggested by EPA (HI or HQ < 1). The carcinogenic risk via inhalation exposure to children, adult men and women were 2.10 × 10−4, 1.80 × 10−4, and 1.03 × 10−4 during the non-heating period, respectively, and 2.52 × 10−4, 2.16 × 10−4 and 1.23 × 10−4 during the heating period, respectively. All the above carcinogenic risks exceeded the threshold ranges (10−6~10−4), and Cr posed a carcinogenic risk to all people.


2013 ◽  
Vol 807-809 ◽  
pp. 1469-1472
Author(s):  
Li Tang Hu ◽  
Tong Gao ◽  
Jing Rui Wang

Groundwater pollution under the intense of human activities in the Quanzhou coastal area strongly threatens the supply safety of groundwater sources. Based on hydrogeological conditions and the pollution load in this field, the multi-index evaluation method of pollution sources and improved DRASTIC model were employed to assess groundwater pollution risk. The rating and weights of each important factor were determined by expert evaluation method and three-level groundwater pollution risk index were obtained using ARCGIS software. The results show that groundwater pollution risk at the industrial-intensive areas are dominant. So it is necessary for government to control the emmision of pollutant from inducstry in the Quanzhou area.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Kenechukwu E. Ugwu ◽  
Anthony C. Ofomatah

AbstractThe health risk of students’ exposure to some potentially toxic metals in classroom dusts in Southeast, Nigeria was assessed. Dust particles were collected from classrooms in some public high schools and digested with aqua regia before analysis for selected metals by atomic absorption spectrophotometry. The geoaccumulation index, contamination factor and the pollution load index were assessed from the metal concentrations of the dust. Hazard quotient and cancer risk index were used to estimate the potential health risk of students’ exposure to the metals in the dust. The metal concentrations (mg/kg) were in the ranges of 1.57–175.38 (Cr); 0.93–463.28 (Cu); 31.94.76–6623.41 (Fe); 4.96–143.98 (Ni); 2.64–375.27 (Zn); and 2.35–53.96 (Pb).The geo-accumulation index values showed that all the dust samples were polluted with Fe and Cr; and unpolluted with other metals with few exemptions. The contamination factor values showed that all the schools but one had a low contamination status due to Ni and Cu. There was moderate contamination by Pb at all the schools but two. All the schools had high contamination of Cr and Fe. The pollution load index indicated that the quality of all the classrooms was deteriorated. The calculated values of hazard quotient indicated that ingestion of dust at most of the classrooms would have no significant risk of non-carcinogenic effects on the health of the students. Dermal contact with the dust at all the classrooms would expose students to adverse effects of Fe. There will be adverse effect due to Pb for dermal contact with dust at most of the schools. Ingestion of dust particles at classrooms in all the schools would have carcinogenic effect due to Ni. Correlation analysis indicated that the sources of the metals varied. This study provided baseline data for relevant bodies to use in monitoring and controlling pollution so as to protect students from toxic metals.


2021 ◽  
Vol 11 (11) ◽  
pp. 4775
Author(s):  
Alina Soceanu ◽  
Simona Dobrinas ◽  
Corina Ionela Dumitrescu ◽  
Natalia Manea ◽  
Anca Sirbu ◽  
...  

Groundwater pollution is a very common problem worldwide, as it poses a serious threat to both the environment and the economic and social development and consequently generates several types of costs. The analysis of pollution control involves a permanent comparison between pollution costs and the costs associated with various methods of pollution reduction. An environmental policy based on economic instruments is more effective than an environmental policy focused on command and control tools. In this respect, the present paper provides a case study showing how anthropogenic factors such as wastewater, industrial, agricultural, and natural factors are able to change the physical and chemical parameters of groundwater in the study area, thus endangering their quality. In order to monitor the groundwater quality in the region of Dobrudja, an analysis of physico-chemical parameters was performed. The content of heavy metals was analyzed and the health risk index was taken into account and analyzed, in order to set a better correctness of the metal content from the underground waters. Studies on groundwater quality control have shown that, in many parts of the world, water has different degrees of quality depending on the natural and anthropogenic factors acting on the pertaining environment. This is why more attention should be paid to the prevention of groundwater pollution and the immediate remediation of accidents.


2019 ◽  
Vol 28 (4) ◽  
pp. 769-777
Author(s):  
О. Ulytsky ◽  
V. Yermakov ◽  
О. Lunova ◽  
К. Boiko ◽  
D. Averin

An adaptation of the national water resources management system in accordance with the requirements of European legislation creates the legislative basis for reforms im- plementation in the field of monitoring and water use. The basin management principle started to be applied, according to which surface and groundwater arrays are the water resources management units. The preliminary groundwater array status assessment (both quantitative and qualitative) is a necessary procedure that enforces the development of appropriate monitoring program and measures elaboration in order to improve groundwater ecological status. This study tested a methodology of groundwater deterioration risk assessment as a tool for previous groundwater array cological status estimation. The research provides an approbation of the methodology in relation to groundwater arrays identified and delineated within Siversky Donets river basin (that covers Kharkiv, Donetsk and Lugansk regions). Surface water and groundwater are affected by significant anthropogenic pressures in form of pollution from point sources of heavy industry facilities. A risk model comprises groundwater vulnerability map and simulated model of anthropogenic pressure magnitude distribution reflecting the impact extent of the main sources of groundwater pollution. Vulnerability map was developed using the tool of input factors weight index estimation. Authors considered the following factors as determining – soils characteristic, aeration zone characteristics, geological environment of groundwater arrays of Cenozoic-Mesozoic group. The pollution load index was calculated. Input data for calculation are concentrations of hazardous substances (metals, semimetals, halogens and nitrates and phenol compounds) measured in groundwater samples during the 2017 monitoring year period. The results of the value interpolation of calculated pollution load index reproduce the focal (point) nature of groundwater pollution and indicates the significant groundwater pollution of Quaternary and Upper Cretaceous, both Carboniferous aquifers and corresponding groundwater arrays. A logical matrix is created on the basis of a combination of pres- sure magnitudes and vulnerability classes. The area of each class of risk is calculated within groundwater arrays with zonal statistic technique. Consequently, each groundwater array is assigned with preliminary estimated risk category. Created model enables to per- form previous groundwater array status assessment. The proposed model expected to be more useful after the data on pollution from diffuse sources obtaining and its validation after the first stage of surveillance monitoring realization.


2015 ◽  
Vol 1092-1093 ◽  
pp. 673-677 ◽  
Author(s):  
Mei Ling Ban ◽  
Shi Qi Guo ◽  
Rong Yu ◽  
Rui Zhi Huang

Guangxi Nandan county is a typical karst geological area, groundwater is rich, rich Tibetan non-ferrous metals. In order to study the risk of groundwater pollution on human health in mining area of Nandan County, base on the investigation and monitoring, The results of groundwater environment risk assessment of mine area of Nandan County show that water environmental health risk of No.5 belong to the minimum level, No.1, No. 2, No.3 and No.7 of four monitoring points is low risk,No.4 and No.6 for medium risk, No.8 as high risk.The health risk average value caused by toxic substances to individual person per year is 4.76×10-5a-1, which is less than the maximum acceptable level5×10-5a-1recommended by ICRP. The groundwater environmental health risks, mainly comes from chemical carcinogens arsenic (As), accounted for the average health risk (Rt) 99.998%,non carcinogenic health risk accounted for only 0.002%, almost negligible, therefore,stricter governing of chemical carcinogens is an effective way to reduce the health risk of groundwater pollution in mining area of Nandan County.


Sign in / Sign up

Export Citation Format

Share Document