Sustainable agriculture in Northeastern India: how do tribal farmers perceive and respond to climate change?

Author(s):  
Amol Kamalakar Bhalerao ◽  
Livia Rasche ◽  
Jürgen Scheffran ◽  
Uwe A. Schneider
2018 ◽  
Vol 21 (3 (1)) ◽  
pp. 37-40
Author(s):  
M. Qasim Jan ◽  
Khazima Muazim ◽  
Arshad Ashraf

2021 ◽  
Vol 22 (15) ◽  
pp. 7877
Author(s):  
Fahimeh Shahinnia ◽  
Néstor Carrillo ◽  
Mohammad-Reza Hajirezaei

Environmental adversities, particularly drought and nutrient limitation, are among the major causes of crop losses worldwide. Due to the rapid increase of the world’s population, there is an urgent need to combine knowledge of plant science with innovative applications in agriculture to protect plant growth and thus enhance crop yield. In recent decades, engineering strategies have been successfully developed with the aim to improve growth and stress tolerance in plants. Most strategies applied so far have relied on transgenic approaches and/or chemical treatments. However, to cope with rapid climate change and the need to secure sustainable agriculture and biomass production, innovative approaches need to be developed to effectively meet these challenges and demands. In this review, we summarize recent and advanced strategies that involve the use of plant-related cyanobacterial proteins, macro- and micronutrient management, nutrient-coated nanoparticles, and phytopathogenic organisms, all of which offer promise as protective resources to shield plants from climate challenges and to boost stress tolerance in crops.


Author(s):  
Jyotsna Kiran Peter ◽  
Uday Shankar Pandey ◽  
Arjun Karmakar ◽  
Anjulata Suman Patre

2021 ◽  
Vol 748 (1) ◽  
pp. 012039
Author(s):  
Tualar Simarmata ◽  
M Khais Proyoga ◽  
Diyan Herdiyantoro ◽  
Mieke R Setiawati ◽  
Kustiwa Adinata ◽  
...  

Abstract Climate change (CC) is real and threatens the livelihood of most smallholder farmers who reside along the coastal area. The CC causes the rise of temperature (0.2-0.3°C/decade) and sea level (SRL = 5 mm/year), drought and floods to occur more frequently, the change of rainfall intensity and pattern and shifting of planting season and leads to the decreasing of crop yield or yield loss. Most of the paddy soil has been exhausted and degraded. About 50% of the rice field along the coastline is effected by high salinity and causes significant yield losses. The research was aimed to summarize the results of the system of organic based aerobic rice intensification (known as IPATBO) and of two climate filed school (CFS) in Cinganjeng and Rawapu that situated along the coastline of Pangandaran and Cilacap. Both IPATBO and CFS have adopted the strategy of climate-resilient sustainable agriculture (CRSA) for restoring the soil health and increasing rice productivity, and as well as to empower the farmer community. The implementation of IPATBO (2010-2020) in the different areas has increased the soil health, fertilizers, and water efficiency (reduce inorganic by 25-50%, and water by 30-40%) and increased rice productivity by at least 25-50%. Both CFS in Ciganjeng and Rawaapu were able to improve soil fertility, increase rice productivity, and farmer capacity. This result concludes the agro-ecological based CRSA and CFS can be adopted for the increasing the resilient of agricultural practices and farmers in adapting to climate change


2021 ◽  
Vol 4 (2) ◽  
pp. 1100-1107
Author(s):  
Nguyen Van Phu

Climate change is one of the greatest threats to human beings, and agriculture is one of the fields that is most negatively affected by climate change. Farmers around the world and global food supply chains are impacted by the more extreme weather phenomena and increased damage of diseases and pests caused by climate change. Today, almost all agricultural enterprises and farms consider climate change a serious long-term risk for their production. Agricultural land systems can produce significant greenhouse gases (GHGs) by the conversion of forests to crop- and animal lands, and also through the weak management of crops and livestock. Around the world, cultivation and cattle production accounts for 25% of global GHG emissions (Javeline, ‎2014). However, under suitable conditions, agriculture can create environmental conditions that can help minimize pollution and the negative effects of climate change including carbon absorption by green plants in forests, and fields for watershed protection and biodiversity conservation. Sustainable agriculture helps farmers to adapt, maintain, and improve productivity without applying harmful techniques. In turn, this allows farms to manage and mitigate climate-related risks in their supply chains. The Sustainable Agriculture Network (SAN) has found new ways to incorporate smart climate cultivation methods into all farming practices to help farms and enterprises carry out agriculture sustainably.


2021 ◽  
Vol 280 ◽  
pp. 111736
Author(s):  
Raj Mukhopadhyay ◽  
Binoy Sarkar ◽  
Hanuman Sahay Jat ◽  
Parbodh Chander Sharma ◽  
Nanthi S. Bolan

Sign in / Sign up

Export Citation Format

Share Document