CXLII. On the application of eigenfunction expansions to the problem of the thermal instability of a fluid sphere heated within

Author(s):  
G.E. Backus

The theory of marginal convection in a uniformly rotating, self-gravitating, fluid sphere, of uniform density and containing a uniform distribution of heat sources, is developed to embrace modes of convection which are asymmetric with respect to the axis of rotation. It is shown that these modes are the most unstable, except for the smallest Taylor numbers, T (a measure of the rotation rate); i.e. for any T and o) (Prandtl number), the lowest Rayleigh number (a measure of the temperature gradients in the sphere) is associated with an asymmetric motion. This is demonstrated both by an expansion method suitable for small T, and by asymptotic theory for T oo. For large T, the eigenmode most easily excited is small in amplitude everywhere except near a cylindrical surface, of radius about half that of the sphere, and coaxial with the diameter parallel to the angular velocity vector.


Author(s):  
N. David Theodore ◽  
Andre Vantomme ◽  
Peter Crazier

Contact is typically made to source/drain regions of metal-oxide-semiconductor field-effect transistors (MOSFETs) by use of TiSi2 or CoSi2 layers followed by AI(Cu) metal lines. A silicide layer is used to reduce contact resistance. TiSi2 or CoSi2 are chosen for the contact layer because these silicides have low resistivities (~12-15 μΩ-cm for TiSi2 in the C54 phase, and ~10-15 μΩ-cm for CoSi2). CoSi2 has other desirable properties, such as being thermally stable up to >1000°C for surface layers and >1100°C for buried layers, and having a small lattice mismatch with silicon, -1.2% at room temperature. During CoSi2 growth, Co is the diffusing species. Electrode shorts and voids which can arise if Si is the diffusing species are therefore avoided. However, problems can arise due to silicide-Si interface roughness (leading to nonuniformity in film resistance) and thermal instability of the resistance upon further high temperature annealing. These problems can be avoided if the CoSi2 can be grown epitaxially on silicon.


Sign in / Sign up

Export Citation Format

Share Document