The Simulation of an Industrial Fixed Bed Reactor for Methanol Dehydration to Dimethyl Ether

Author(s):  
L. Zhang ◽  
H. T. Zhang ◽  
W. Y. Ying ◽  
D. Y. Fang
2014 ◽  
Vol 931-932 ◽  
pp. 3-6 ◽  
Author(s):  
Watcharakorn Pranee ◽  
Pornsawan Assawasaengrat ◽  
Arthit Neramittagapong ◽  
Sasitorn Intarachit ◽  
Sutasinee Neramittagapong

The synthesis of dimethyl ether via methanol dehydration has been carried out over Beta zeolite (BEA) and ion-exchanged Beta zeolite from bagasse fly ash using hydrothermal method. The reactions were taken place in a fixed-bed reactor. The effects of nickel and zirconium ion-exchanged of BEA were investigated. Ni-BEA zeolite exhibited high methanol conversion rate and DME-resultant upon the reaction temperature from 200 to 225°C with equilibrium-limiting condition over 225°C; Furthermore, the Ni-BEA zeolite presented the best stable activity at 225°C over 1,200 minute. The Ni-BEA zeolite has also been interesting as a zeolite which suited to be one role importance to improve the properties for methanol dehydration to dimethyl ether.


2014 ◽  
Vol 931-932 ◽  
pp. 42-46 ◽  
Author(s):  
Watcharakorn Pranee ◽  
Pornsawan Assawasaengrat ◽  
Arthit Neramittagapong ◽  
Sutasinee Neramittagapong

The synthesis of dimethyl ether via methanol dehydration has been carried out over untreated-diatomite catalyst (DM) and hydrochloric acid modified treatment on diatomite catalyst (DMHC). The reactions were carried out in a fixed-bed reactor. The effects of hydrochloric acid modifications of diatomite on its catalytic performance were studied. The characterization such as XRD, SEM, FT-IR and FT-Raman had no deformation after HCl-modified treatment on catalysts. DMHC catalyst apparently gave the higher methanol conversion rate than DM due to the acidity while the selectivity of dimethyl ether from 250 to 350°C was slightly changed. The acidity was depended upon Al(IV) ions; nevertheless, both Al(V) and Al(VI) were affected and hence increasing the basic active sites. Not only was the competitively catalytic methanol dehydrogenation preferred with basic condition but also methanol-blocking water molecule interaction was the unwanted reaction. In this investigation, the chemical-bond arrangements of silicon and aluminium ions were proposed with solid MAS/NMR. The DMHC catalyst exhibited better DME yield than the DM catalyst, and it could be used as a selective catalyst for DME synthesis from methanol.


Author(s):  
Seyyed Ya'ghoob Hosseini ◽  
Mohammad Reza Khosravi Nikou

Abstract A simple co-precipitation method was utilized to synthesize γ-Al2O3 catalysts using aluminum nitrate nonahydrate as the source of aluminum cations for methanol dehydration to dimethyl ether (DME). Different precipitating agents comprising ammonium carbonate, ammonium bicarbonate and ammonia solutions were used for preparation of the samples. The catalysts were characterized by XRD, FTIR, SEM, NH3-TPD and N2 adsorption-desorption techniques. The sample prepared by ammonia solution had the highest acidity among the synthesized catalysts. Also, N2 adsorption-desorption results showed suitable textural properties for all of the synthesized samples. Vapor phase dehydration of methanol to DME was performed in the fixed bed micro reactor over the synthesized catalysts and commercial one for comparison purposes. The effects of different characteristics of catalysts such as surface area, acidity, sintering factor and temperature as an operating parameter on performance of catalysts were investigated. The catalyst prepared by ammonia solution showed best catalytic activity due to the suitable textural properties and high amount of acidic sites. Also, the results showed that only high acid strength can’t result high yield of DME for a solid acid catalyst.


2011 ◽  
Vol 347-353 ◽  
pp. 3681-3684 ◽  
Author(s):  
Young Ho Kim ◽  
Su Gyung Lee ◽  
Byoung Kwan Yoo ◽  
Han Sol Je ◽  
Chu Sik Park

A SAPO-34 catalyst is well known to be one of the best catalysts for DME to olefins (DTO) reaction. Main products of the reaction were light olefins such as ethylene, propylene and butenes. However, the main problem is rapid deactivation of the SAPO-34 catalyst due to coke deposition during DTO reaction. In this study, various SAPO-34/ZrO2 catalysts added with ZrO2 were prepared for improving the lifetime and their physicochemical properties have been characterized by XRD and SEM. The DTO reaction over various SAPO-34/ZrO2 catalysts was carried out using a fixed bed reactor. All SAPO-34/ZrO2 catalysts showed similar activity and selectivity in the DTO reaction. The SAPO-34(9wt%)/ZrO2 catalyst was showed the best performance for the catalyst lifetime.


Author(s):  
Mohammad Farsi ◽  
Abdolhossein Jahanmiri ◽  
Reza Eslamloueyan

Dimethyl ether (DME) is a green fuel that commercially produced in an adiabatic fixed bed reactor by methanol dehydration. In the present work, a shell and tube fixed bed reactor is modeled and optimized for DME production. The reactor is modeled based on mass and energy conservation equations as well as auxiliary equations. In order to estimate the DME production and temperature profile along the reactor, a one dimensional heterogeneous model consist of a set of nonlinear differential and algebraic equations has been solved numerically. Also, The DME production in the isothermal reactor is maximized by adjusting the optimal temperature distribution along the reactor using genetic algorithm. Then, the performance of the proposed isothermal reactor is compared with industrial adiabatic fixed bed reactor. Results showed the higher DME production rate and methanol conversion in the optimized reactor.


2013 ◽  
Vol 15 (2) ◽  
pp. 122-127 ◽  
Author(s):  
Ziyang Bai ◽  
Hongfang Ma ◽  
Haitao Zhang ◽  
Weiyong Ying ◽  
Dingye Fang

The production processes included catalytic dehydration of methanol in an adiabatic fixed-bed reactor and two columns product separations. In this study, the technological process for dimethyl ether (DME) synthesis is built on PRO/II platform based on the combined parameters of the reaction dynamic model for methanol dehydration reaction, the improved NRTL model of the liquid phase, the PR model of vapor phase. In order to validate the proposed model, the simulation results have been compared with the available data from a set of industrial production equipment with a production capacity of 200 000 tonnes per annum. A comparison between the calculated and measured results has proved that these results are satisfactory. The bed height and the volume of the catalytic bed are calculated aim at one million t/a DME yields and while taking account of high-purity DME production. After discussing the influence of feed stage location and reflux ratio for DME product purity, the suitable unit operation conditions are chosen. Accordingly, accurate process simulation results provide the basis and guidance for an improvement and development of the similar industrial device.


Sign in / Sign up

Export Citation Format

Share Document