Indoor temperature regulation and energy consumption inside a working office in building system using a predictive functional control

Author(s):  
Nassima Ouali ◽  
Hocine Lehouche ◽  
Youcef Belkhier ◽  
Abdelyazid Achour
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 997
Author(s):  
Davide Coraci ◽  
Silvio Brandi ◽  
Marco Savino Piscitelli ◽  
Alfonso Capozzoli

Recently, a growing interest has been observed in HVAC control systems based on Artificial Intelligence, to improve comfort conditions while avoiding unnecessary energy consumption. In this work, a model-free algorithm belonging to the Deep Reinforcement Learning (DRL) class, Soft Actor-Critic, was implemented to control the supply water temperature to radiant terminal units of a heating system serving an office building. The controller was trained online, and a preliminary sensitivity analysis on hyperparameters was performed to assess their influence on the agent performance. The DRL agent with the best performance was compared to a rule-based controller assumed as a baseline during a three-month heating season. The DRL controller outperformed the baseline after two weeks of deployment, with an overall performance improvement related to control of indoor temperature conditions. Moreover, the adaptability of the DRL agent was tested for various control scenarios, simulating changes of external weather conditions, indoor temperature setpoint, building envelope features and occupancy patterns. The agent dynamically deployed, despite a slight increase in energy consumption, led to an improvement of indoor temperature control, reducing the cumulative sum of temperature violations on average for all scenarios by 75% and 48% compared to the baseline and statically deployed agent respectively.


2021 ◽  
Author(s):  
Mohammad Adnan Naeem.

This project analyses the energy consumption of 44 Gerrard St. East. This site is primarily used as the Ryerson University Theatre School and it consists of four classrooms, seventeen offices, six studios, and two theatre auditoriums. Since it is a three-storey building, plus a basement, thus, the energy level for this building is supposed to be moderate. However, because it is an old structure, constructed back in the early 1940s, this building seemingly has considerable energy consumption. The main objective of this energy assessment is to reduce the building load. This goal can be achieved by simplifying and controlling certain parameters that directly and indirectly involve energy consumption. For example, indoor temperature and relative humidity can be maintained at low level in winter and at high level in summer. In addition, monitoring heat loss, heat gain, infiltrations through the building surrounds, and the level of illumination for various types of lights helps to reduce overall energy consumption. Several other factors such as operating costs, maintenance costs, and repair costs influence the energy management of the site. With the help of energy management software, eQUEST, the structure, outlook of all the walls, windows, roof and the type of HVAC system can be developed for analysis. Through eQUEST, various tasks such as heat transfer involvement, energy consumption load calculations and load balancing in comparison with energy saving guidelines will be discussed in detail.


2014 ◽  
Vol 525 ◽  
pp. 408-411
Author(s):  
Min Seon Jang ◽  
Gyeong Seok Choi ◽  
Jae Sik Kang ◽  
Yumin Kim

Window film is generally attached the glazing in buildings to improve the thermal performance of the window system by addressing a range of problems such as indoor temperature rise, indoor temperature imbalance, degraded heating and cooling load due to excessive influx of solar radiation. To evaluate the performance of window films, window films are attached to 3mm or 6mm clear glass. However, window films are generally used on existing window systems for reducing the annual energy consumption. Therefore it is necessary to evaluate the performance of window films depending on the performance of glazing such as clear double glazing or low-e double glazing. Thus the purpose of this study is to analyze the performance of window systems when window film is attached. As a result, in the case of applying window films for reducing the SHGC of buildings, it is necessary to select window films suitable for the configuration and performance of the glazing to be installed, considering the SHGC of the entire glazing system.


Sign in / Sign up

Export Citation Format

Share Document