Flexural wave dispersion characteristics of imperfect Ti-6Al-4V foam circular cylindrical shells in a thermal environment

Author(s):  
Chunwei Zhang ◽  
Huidong Cao ◽  
A. Eyvazian ◽  
Afrasyab Khan ◽  
Naeim Farouk ◽  
...  
2019 ◽  
Vol 11 (05) ◽  
pp. 1950045 ◽  
Author(s):  
Vu Hoai Nam ◽  
Nguyen Thi Phuong ◽  
Cao Van Doan ◽  
Nguyen Thoi Trung

A new analytical approach to investigate the nonlinear buckling and postbuckling of the sandwich functionally graded circular cylindrical shells reinforced by ring and stringer or spiral stiffeners subjected to external pressure is presented in this paper. By employing the Donnell shell theory, the geometrical nonlinearity in Von Kármán sense and developed Lekhnitskii’s smeared stiffener technique, the governing equations of sandwich functionally graded circular cylindrical shells are derived. Resulting equations are solved by applying the Galerkin method to obtain the explicit expression of critical buckling external pressure load and postbuckling load–deflection curve. Effects of spiral stiffeners, thermal environment, external pressure, and geometrical parameters on nonlinear buckling behavior of sandwich functionally graded circular cylindrical shells are shown in numerical results.


Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. D35-D43 ◽  
Author(s):  
Sheng-Qing Lee ◽  
Xiao-Ming Tang ◽  
Yuan-da Su ◽  
Chun-Xi Zhuang

We have developed a model-based processing technique for borehole dipole S-wave logging data to estimate formation shear slowness from the data. During dipole acoustic logging, the presence of the logging tool can significantly affect the dispersion characteristics of flexural waves. Therefore, modeling the effects of the tool is essential for model-based processing. We have determined that an equivalent-tool theory using only two parameters, tool radius, and modulus, can adequately model the flexural-wave-dispersion characteristics. We used this theory, together with a calibration procedure, to determine the tool parameters to formulate an inversion method for the logging data processing. Our use of the equivalent tool theory played an important role in fitting the theoretical dispersion curve to the actual flexural-wave-dispersion data, enabling fast processing of the field acoustic data. An advantage of this model-based method is its prediction power, which, in the absence of low-frequency dispersion data, allows for predicting formation shear slowness from the low-frequency limit of the model-fitted dispersion curve. We have also developed an application procedure of the method for field-data processing and demonstrated its effectiveness in the dispersion correction using field acoustic data from fast and slow formations.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E183-E190 ◽  
Author(s):  
Xiao-Ming Tang ◽  
Douglas J. Patterson

We have developed a novel constrained inversion method for estimating a radial shear-wave velocity profile away from the wellbore using dipole acoustic logging data and have analyzed the effect of the radial velocity changes on dipole-flexural-wave dispersion characteristics. The inversion of the dispersion data to estimate the radial changes is inherently a nonunique problem because changing the degree of variation or the radial size of the variation zone can produce similar wave-dispersion characteristics. Nonuniqueness can be solved by developing a constrained inversion method. This is done by constraining the high-frequency portion of the model dispersion curve with another curve calculated using the near-borehole velocity. The constraint condition is based on the physical principle that a high-frequency dipole wave has a shallow penetration depth and is therefore sensitive to the near-borehole shear-wave velocity. We have validated the result of the constrained inversion with synthetic data testing. Combining the new inversion method with four-component crossed-dipole anisotropy processing obtains shear radial profiles in fast and slow shear polarization directions. In a sandstone formation, the fast and slow shear-wave profiles show substantial differences caused by the near-borehole stress field, demonstrating the ability of the technique to obtain radial and azimuthal geomechanical property changes near the wellbore.


Sign in / Sign up

Export Citation Format

Share Document