scholarly journals Probabilistic Fracture Mechanics Round Robin Analysis of Reactor Pressure Vessels during Pressurized Thermal Shock

2010 ◽  
Vol 47 (12) ◽  
pp. 1131-1139 ◽  
Author(s):  
Myung Jo JHUNG ◽  
Seok Hun KIM ◽  
Young Hwan CHOI ◽  
Yoon Suk CHANG ◽  
Xiangyuan XU ◽  
...  
2011 ◽  
Vol 462-463 ◽  
pp. 878-883
Author(s):  
Yasuhiro Kanto ◽  
S. Yoshimura

This paper demonstrates sensitive analyses of probabilistic fracture mechanics (PFM) for reactor pressure vessel (RPV) during pressurized thermal shock (PTS) loading, and comparison of our calculation with the results of the international round robin (RR) analyses in Asian countries (Korea, Taiwan and Japan). The international Round Robin activity was performed in PFM sub-committees in the Atomic Energy Research Committee of Japan Welding Engineering Society (JWES) in conjunction with Korea and Taiwan research groups. The purposes of this program are to establish reliable procedures to evaluate fracture probability of reactor pressure vessels during pressurized thermal shock and to maintain the continuous cooperation among Asian institutes in the probabilistic approach to nuclear safety. Some parameters to RPV failure probabilities are chosen to evaluate their significance quantatively. The differences caused by selection of analyzing programs and some input parameters will be discussed.


Author(s):  
Yinsheng Li ◽  
Shumpei Uno ◽  
Jinya Katsuyama ◽  
Terry Dickson ◽  
Mark Kirk

A probabilistic fracture mechanics (PFM) analysis code called PASCAL has been developed by the Japan Atomic Energy Agency to evaluate failure frequencies of Japanese reactor pressure vessels (RPVs) during pressurized thermal shock (PTS) events based on Japanese data and Japanese methods published for or provided in Japanese codes and standards. To verify this code, benchmark analyses were carried out using the FAVOR code, which was developed in the United States and has been utilized in nuclear regulation. The results of these analyses confirmed with great confidence the applicability of PASCAL to failure probability and frequency evaluation of Japanese RPVs. An outline of PASCAL, the benchmark analysis conditions and analysis results are reported in this paper.


Author(s):  
Yinsheng Li ◽  
Shumpei Uno ◽  
Koichi Masaki ◽  
Jinya Katsuyama ◽  
Terry Dickson ◽  
...  

A probabilistic fracture mechanics (PFM) analysis code PASCAL has been developed by Japan Atomic Energy Agency based on Japanese methods and data to evaluate failure probabilities and failure frequencies of Japanese reactor pressure vessels (RPVs) considering pressurized thermal shock (PTS) events and neutron irradiation embrittlement. To verify PASCAL, we have been performing benchmark analyses by using a PFM code FAVOR which has been developed in the United States and utilized in nuclear regulation. Based on two-year activities, the applicability of PASCAL in failure probability and failure frequency evaluation of Japanese RPVs was confirmed with great confidence. The analysis conditions, approaches and results are given in this paper.


Author(s):  
Zengliang Gao ◽  
Yuebing Li ◽  
Yuebao Lei

Both probabilistic and deterministic methods are used in structural integrity assessment of reactor pressure vessels (RPV) under pressurized thermal shock (PTS) conditions. The deterministic assessment is normally performed using flaw assessment procedures based on linear elastic or elastic-plastic fracture mechanics. Over the past two decades, the probabilistic assessment approach, which is based on probabilistic fracture mechanics (PFM), has undergone continuous development, mostly driven by the desire to address some of the weaknesses of the deterministic approach and to facilitate increasing the life and safety of nuclear power plants. In this paper, structural integrity assessments for a selected RPV subjected to a typical PTS transient are performed using the deterministic approach according to different flaw assessment codes. The failure probabilities corresponding to the deterministic facture mechanics method with defined safety factors are evaluated and compared with the failure probability value determined using the PFM method. Several sources of uncertainty that affect the assessment of the structural integrity of an RPV under PTS, including uncertainties in the material property values, the fracture toughness and the flaw size are incorporated in the failure probability evaluation. The response distribution of crack driving force is obtained from the PFM analysis and the failure probability is calculated using Monte Carlo simulation, where the failure criteria used in the deterministic assessment are adopted. The results of analysis from the two approaches are compared and discussed. The results show that the defined safety factor in the deterministic methods does affect the limit failure probability implied by the method. However, there is no unique relationship between safety factor and the limit failure probability.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
Yinsheng Li ◽  
Genshichiro Katsumata ◽  
Koichi Masaki ◽  
Shotaro Hayashi ◽  
Yu Itabashi ◽  
...  

Abstract Nowadays, it has been recognized that probabilistic fracture mechanics (PFM) is a promising methodology in structural integrity assessments of aged pressure boundary components of nuclear power plants, because it can rationally represent the influencing parameters in their inherent probabilistic distributions without over conservativeness. A PFM analysis code PFM analysis of structural components in aging light water reactor (PASCAL) has been developed by the Japan Atomic Energy Agency to evaluate the through-wall cracking frequencies of domestic reactor pressure vessels (RPVs) considering neutron irradiation embrittlement and pressurized thermal shock (PTS) transients. In addition, efforts have been made to strengthen the applicability of PASCAL to structural integrity assessments of domestic RPVs against nonductile fracture. A series of activities has been performed to verify the applicability of PASCAL. As a part of the verification activities, a working group was established with seven organizations from industry, universities, and institutes voluntarily participating as members. Through one-year activities, the applicability of PASCAL for structural integrity assessments of domestic RPVs was confirmed with great confidence. This paper presents the details of the verification activities of the working group, including the verification plan, approaches, and results.


Sign in / Sign up

Export Citation Format

Share Document