scholarly journals CRISPR/cas9-mediated overexpression of long non-coding RNA SRY-box transcription factor 21 antisense divergent transcript 1 regulates the proliferation of osteosarcoma by increasing the expression of mechanistic target of rapamycin kinase and Kruppel like factor 4

Bioengineered ◽  
2021 ◽  
Author(s):  
Weiying Zhang ◽  
Qiang Wang ◽  
Haibo Du ◽  
Shichao Jiang
2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Yang He ◽  
Peng Gong ◽  
Sitong Wang ◽  
Qing Xu ◽  
Jianhua Chen

Abstract Background Colon cancer is a serious malignant tumor. It has been reported that paired-like homeodomain transcription factor 2 (PITX2) can promote the progression of several types of cancer via regulating the Wnt/β-catenin pathway. It has also been demonstrated that high levels of long non-coding RNA (lncRNA) gastric carcinoma high expressed transcript 1 (GHET1) can also promote the development of cervical cancer via activating the Wnt/β-catenin pathway. However, whether PITX2 can affect the development of colon cancer via regulating the expression of lncRNA GHET1 remains unclear. Results The results demonstrated that PITX2 knockdown attenuated the proliferation, migration and invasion abilities of colon cancer cells. Additionally, PITX2 promoted the expression of lncRNA GHET1 via binding to its promoter. Overexpression of lncRNA GHET1 induced the expression of Wnt/β-catenin signaling-related proteins, cyclin D1, c-Myc and MMP-7. Furthermore, lncRNA GHET1 overexpression abrogated the PITX2 silencing-mediated decreased proliferation, migration and invasion abilities of colon cancer cells. Conclusion The findings of the present study suggested that PITX2 could enhance the proliferation, migration and invasion abilities of colon cancer cells via upregulating lncRNA GHET1 and activating the Wnt/β-catenin pathway.


2018 ◽  
Vol 123 (3) ◽  
pp. 469-482 ◽  
Author(s):  
Tongtong Yu ◽  
David T W Tzeng ◽  
Ran Li ◽  
Jianye Chen ◽  
Silin Zhong ◽  
...  

MedComm ◽  
2020 ◽  
Vol 1 (3) ◽  
pp. 386-399
Author(s):  
Shihai Liu ◽  
Jing Qiu ◽  
Weitai He ◽  
Chao Geng ◽  
Guifang He ◽  
...  

Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3586-3586
Author(s):  
Ada Congrains ◽  
João Agostinho Machado-Neto ◽  
Flávia Adolfo Corrocher ◽  
Renata Giardini Rosa ◽  
Fernanda Soares Niemann ◽  
...  

Abstract Aberrant regulation of the WNT signaling pathway is a signature in numerous human cancers. Lymphoid enhancer-binding factor-1 (LEF1) is an important transcription factor downstream of this pathway. LEF1 over-expression induces AML in mice and plays a critical role in hematopoietic cell differentiation (Petropoulos et al JME 2008). Reduction of LEF1 expression through the progression of myelodysplastic syndrome has been reported and further supports the relevance of this gene in the disease pathogenesis (Pellagatti et al Br J Haematol. 2009). Our previous work using microarray technology revealed a decreased expression of a long non-coding RNA antisense to LEF1 (LEF1-AS) in MDS patients (Baratti et al BMC Medical Genomics 2010). Mounting evidence suggests that long non-coding transcripts play important roles in the epigenetic regulation of coding genes. In this context it is not surprising that long non-coding RNAs are emerging as key players in disease development and progression. Non-coding expression overlapping coding genes is very common and several examples of local regulation have been described in the literature. Here we investigate for the first time the role of LEF1 antisense long non-coding in hematopoiesis and demonstrated its contribution in the regulation of the LEF1 locus in a leukemic cell line. To explore a possible role of LEF1-AS in differentiation, we evaluated the expression pattern of LEF1-AS through erythroid cell differentiation using qRT-PCR. CD34+ HSC cells from 6 healthy donors were induced to differentiate into erythrocytes by addition of erythropoietin during 12 days. We observed that LEF1-AS is modulated during erythroid differentiation. It was significantly down-regulated during the first stages of differentiation from CD34+ HSC to erythroblast (from collection day 6 to day 8 after addition of erythropoietin, 78% mean reduction, P<0.0001) and it was up-regulated at the end-point of collection, day 12 (not significant). Lef1 coding gene displayed a similar expression pattern, consistent with previous reports of Lef1 expression during erythroid maturation (Edmaier et al Leukemia 2014). To explore a possible regulatory role of LEF1-AS, we cloned and over-expressed the transcript in KG1 CD34+ leukemia cell line. Transient over-expression of Lef1-AS led to a significant up-regulation of Lef1 gene (22% increase, P<0.05). We also observed an increase in cell viability (19% increase P<0.05), measured by MTT, which is consistent with the up-regulation of LEF1, a pro-proliferative and anti-apoptotic transcription factor. Our preliminary results from over-expressing LEF1-AS in CD34+ HSCs suggest a similar regulatory effect of LEF1-AS upon its coding counterpart, LEF1. Since aberrant expression of LEF1 is known to disrupt normal differentiation of CD34+ cells, LEF1-AS could potentially affect differentiation through the modulation of LEF1 coding gene. Our results reveal LEF1-AS transcript as a novel player in hematopoiesis and hematologic malignancy. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document