scholarly journals Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons.

1990 ◽  
Vol 110 (4) ◽  
pp. 1295-1306 ◽  
Author(s):  
A M Tolkovsky ◽  
A E Walker ◽  
R D Murrell ◽  
H S Suidan

A method for clamping cytosolic free Ca2+ ([Ca2+]i) in cultures of rat sympathetic neurons at or below resting levels for several days was devised to determine whether Ca2+ signals are required for neurite outgrowth from neurons that depend on Nerve Growth Factor (NGF) for their growth and survival. To control [Ca2+]i, normal Ca2+ influx was eliminated by titration of extracellular Ca2+ with EGTA and reinstated through voltage-sensitive Ca2+ channels. The rate of neurite outgrowth and the number of neurites thus became dependent on the extent of depolarization by KCl, and withdrawal of KCl caused an immediate cessation of growth. Neurite outgrowth was completely blocked by the L type Ca2+ channel antagonists nifedipine, nitrendipine, D600, or diltiazem at sub- or micromolar concentrations. Measurement of [Ca2+]i in cell bodies using the fluorescent Ca2+ indicator fura-2 established that optimal growth, similar to that seen in normal medium, was obtained when [Ca2+]i was clamped at resting levels. These levels of [Ca2+]i were set by serum, which elevated [Ca2+]i by integral of 30 nM, whereas the addition of NGF had no effect on [Ca2+]i. The reduction of [Ca2+]o prevented neurite fasciculation but this had no effect on the rate of neurite elongation or on the number of extending neurites. These results show that neurite outgrowth from NGF-dependent neurons occurs over long periods in the complete absence of Ca2+ signals, suggesting that Ca2+ signals are not necessary for operating the basic machinery of neurite outgrowth.

1991 ◽  
Vol 115 (2) ◽  
pp. 461-471 ◽  
Author(s):  
A Batistatou ◽  
L A Greene

Past studies have shown that serum-free cultures of PC12 cells are a useful model system for studying the neuronal cell death which occurs after neurotrophic factor deprivation. In this experimental paradigm, nerve growth factor (NGF) rescues the cells from death. It is reported here that serum-deprived PC12 cells manifest an endonuclease activity that leads to internucleosomal cleavage of their cellular DNA. This activity is detected within 3 h of serum withdrawal and several hours before any morphological sign of cell degeneration or death. NGF and serum, which promote survival of the cells, inhibit the DNA fragmentation. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases in vitro, suppresses the endonuclease activity and promotes long-term survival of PC12 cells in serum-free cultures. This effect appears to be independent of macromolecular synthesis. In addition, ATA promotes long-term survival of cultured sympathetic neurons after NGF withdrawal. ATA neither promotes nor maintains neurite outgrowth. It is hypothesized that the activation of an endogenous endonuclease could be responsible for neuronal cell death after neurotrophic factor deprivation and that growth factors could promote survival by leading to inhibition of constitutively present endonucleases.


1992 ◽  
Vol 3 (4) ◽  
pp. 213-214
Author(s):  
Naoyuki Nakao ◽  
Toru Itakura ◽  
Yuji Uematsu ◽  
Yoshitsgu Ooiwa ◽  
Norihiko Komai

Development ◽  
1997 ◽  
Vol 124 (6) ◽  
pp. 1239-1249 ◽  
Author(s):  
K. Vekrellis ◽  
M.J. McCarthy ◽  
A. Watson ◽  
J. Whitfield ◽  
L.L. Rubin ◽  
...  

The Bcl-2 and Bcl-x proteins suppress programmed cell death, whereas Bax promotes apoptosis. We investigated the pattern of expression of Bcl-2, Bax and Bcl-x during neuronal differentiation and development. All three proteins were widely expressed in neonatal rats but, in the adult, Bax levels were 20- to 140-fold lower in the cerebral cortex, cerebellum and heart muscle, whereas Bcl-x was not downregulated in any of the tissues examined. In the cerebral cortex and cerebellum, the decrease in Bax levels occurred after the period of developmental cell death. Further, microinjection of a Bax expression vector into cultured sympathetic neurons, which depend on nerve growth factor for survival, induced apoptosis in the presence of survival factor and increased the rate of cell death after nerve growth factor withdrawal. This effect could be blocked by co-injection of an expression vector for Bcl-xL or for the baculovirus p35 protein, an inhibitor of caspases (ICE-like proteases). These results suggest that, during development, the sensitivity of neurons to signals that induce apoptosis may be regulated by modulating Bax levels and that Bax-induced death requires caspase activity.


2004 ◽  
Vol 15 (4) ◽  
pp. 1881-1894 ◽  
Author(s):  
Germán A. Gil ◽  
Daniela F. Bussolino ◽  
Maximiliano M. Portal ◽  
Adolfo Alfonso Pecchio ◽  
Marianne L. Renner ◽  
...  

We have previously shown that c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. Herein, using PC12 cells induced to differentiate by nerve growth factor, the genomic effect of c-Fos in initiating neurite outgrowth is shown as distinct from its nongenomic effect of activating phospholipid synthesis and sustaining neurite elongation. Blocking c-Fos expression inhibited differentiation, phospholipid synthesis activation, and neuritogenesis. In cells primed to grow, blocking c-Fos expression determined neurite retraction. However, transfected cells expressing c-Fos or c-Fos deletion mutants with capacity to activate phospholipid synthesis sustain neurite outgrowth and elongation in the absence of nerve growth factor. Results disclose a dual function of c-Fos: it first releases the genomic program for differentiation and then associates to the endoplasmic reticulum and activates phospholipid synthesis. Because phospholipids are key membrane components, we hypothesize this latter phenomenon as crucial to support membrane genesis demands required for cell growth and neurite elongation.


Sign in / Sign up

Export Citation Format

Share Document