scholarly journals Biology of chemokine and classical chemoattractant receptors: differential requirements for adhesion-triggering versus chemotactic responses in lymphoid cells.

1996 ◽  
Vol 134 (1) ◽  
pp. 255-266 ◽  
Author(s):  
J J Campbell ◽  
S Qin ◽  
K B Bacon ◽  
C R Mackay ◽  
E C Butcher

Several chemoattractant receptors can support agonist-induced, integrin-dependent arrest of rolling neutrophils in inflamed venules in vivo, as well as subsequent crawling into tissues. It has been hypothesized that receptors of the Galpha(i)-linked chemoattractant subfamilies, especially receptors for chemokines, may mediate parallel activation-dependent arrest of homing lymphocyte subsets. However, although several chemokines can attract subsets of B or T cells, robust chemoattractant triggering of resting lymphocyte adhesion to vascular ligands has not been observed. To study the biology of individual leukocyte chemoattractant receptors in a defined lymphoid environment, mouse L1/2 pre-B cells and/or human Jurkat T cells were transfected with alpha (IL-8 receptor A) or beta (MIP-1alpha/CC-CKR-1) chemokine receptors, or with the classical chemoattractant C5a (C5aR) or formyl peptide receptors (fPR). All receptors supported robust agonist-dependent alpha4beta1 integrin-mediated adhesion of lymphocytes to VCAM-1. L1/2 cells cotransfected with fPR and beta7 integrin were also induced to bind MAdCAM-1, suggesting common mechanisms coupling chemoattractant receptors to activation of distinct integrins. Adhesion was rapid but transient, with spontaneous reversion to unstimulated levels within 5 min after peak binding. When observed under flow conditions, alpha4beta1-mediated arrest occurred within seconds after initiation of contact and rolling of IL-8RA transfectants on VCAM-1/IL-8 co-coated surface; and arrest reversed spontaneously after a mean of 5 min with a return to rolling behavior. Each of the receptors also conferred agonist-specific chemotaxis; however, whereas strong adhesion required simultaneous occupancy of many receptors with maximal responses above the Kd, chemotaxis in each case was suppressed at high agonist concentrations. The findings indicate that alpha and beta chemokine as well as classical chemoattractant receptors can trigger robust adhesion as well as directed migration of lymphoid cells, but that the requirements for and kinetics of adhesion triggering and chemotaxis are distinct, thus permitting their independent regulation. They suggest that the discordance between proadhesive and chemoattractant responses of circulating lymphocytes to many chemokines may reflect quantitative aspects of receptor expression and/or coupling rather than qualitative differences in receptor signaling.

2017 ◽  
Vol 76 (12) ◽  
pp. 2075-2084 ◽  
Author(s):  
Wen-Xiu Mo ◽  
Shan-Shan Yin ◽  
Hua Chen ◽  
Chen Zhou ◽  
Jia-Xin Zhou ◽  
...  

ObjectivesTo explore the role of Vδ2 T cells in the pathogenesis of rheumatoid arthritis (RA).MethodsSixty-eight patients with RA, 21 patients with osteoarthritis and 21 healthy controls were enrolled in the study. All patients with RA fulfilled the 2010 American College of Rheumatology/European League Against Rheumatism criteria for RA. Peripheral Vδ2T population, chemokine receptor expression and proinflammatory cytokine secretion were quantified by flow cytometry. The infiltration of Vδ2 T cells within the synovium was examined by immunohistochemistry and flow cytometry. The effect of tumour necrosis factor (TNF)-α and interleukin (IL)-6 on Vδ2 T migration was determined by flow cytometry and transwell migration assay.ResultsPeripheral Vδ2T cells, but not Vδ1 T cells, were significantly lower in patients with RA, which was negatively correlated with disease activity gauged by Disease Activity Score in 28 joints. Vδ2 T cells from RA accumulated in the synovium and produced high levels of proinflammatory cytokines including interferon-γ and IL-17. Phenotypically, Vδ2 T cells from RA showed elevated chemotaxis potential and expressed high levels of chemokine receptors CCR5 and CXCR3, which was driven by increased serum TNF-α through nuclear factor kappa B signalling. In vivo, TNF-α neutralising therapy dramatically downregulated CCR5 and CXCR3 on Vδ2 T cells and repopulated the peripheral Vδ2 T cells in patients with RA.ConclusionsHigh levels of TNF-α promoted CCR5 and CXCR3 expression in Vδ2 T cells from RA, which potentially infiltrated into the synovium and played crucial roles in the pathogenesis of RA. Targeting Vδ2 T cells might be a potential approach for RA.


Blood ◽  
1999 ◽  
Vol 94 (9) ◽  
pp. 3067-3076 ◽  
Author(s):  
Giovanna Cutrona ◽  
Nicolò Leanza ◽  
Massimo Ulivi ◽  
Giovanni Melioli ◽  
Vito L. Burgio ◽  
...  

Abstract This study shows that human postthymic T cells express CD10 when undergoing apoptosis, irrespective of the signal responsible for initiating the apoptotic process. Cells from continuous T-cell lines did not normally express CD10, but became CD10+ when induced into apoptosis by human immunodeficiency virus (HIV) infection and exposure to CD95 monoclonal antibody, etoposide, or staurosporin. Inhibitors of caspases blocked apoptosis and CD10 expression. Both CD4+ and CD8+ T cells purified from normal peripheral blood expressed CD10 on apoptotic induction. CD10 was newly synthesized by the apoptosing cells because its expression was inhibited by exposure to cycloheximide and CD10 mRNA became detectable by reverse transcription-polymerase chain reaction in T cells cultured under conditions favoring apoptosis. To show CD10 on T cells apoptosing in vivo, lymph node and peripheral blood T cells from HIV+ subjects were used. These suspensions were composed of a substantial, although variable, proportion of apoptosing T cells that consistently expressed CD10. In contrast, CD10+ as well as spontaneously apoptosing T cells were virtually absent in peripheral blood from normal individuals. Collectively, these observations indicate that CD10 may represent a reliable marker for identifying and isolating apoptosing T cells in vitro and ex vivo and possibly suggest novel functions for surface CD10 in the apoptotic process of lymphoid cells.


2002 ◽  
Vol 196 (2) ◽  
pp. 261-267 ◽  
Author(s):  
Megan S. Ford ◽  
Kevin J. Young ◽  
Zhuxu Zhang ◽  
Pamela S. Ohashi ◽  
Li Zhang

Lymphoproliferative (lpr) mice, which lack functional Fas receptor expression and develop autoimmune lymphoproliferative disease, have an accumulation of T cell receptor-αβ+CD4−CD8− (double negative T cells [DNTC]) in the periphery. The function of the accumulating DNTC is not clear. In this study we demonstrate that B6/lpr DNTC can dose dependently kill syngeneic CD8+ and CD4+ T cells from wild-type B6 mice through Fas/Fas ligand interactions in vitro. We also demonstrate that B6/lpr DNTC that are activated and expand in vivo are able to specifically down-regulate allogeneic immune responses mediated by syngeneic Fas+CD4+ and CD8+ T cells in vivo. B6/lpr DNTC that have been preactivated in vivo by infusion of either class I– (bm1) or class II– (bm12) mismatched allogeneic lymphocytes are able to specifically enhance the survival of bm1 or bm12, but not third-party skin allografts when adoptively transferred into naive B6+/+ mice. These findings clearly demonstrate that B6/lpr DNTC have a potent immune regulatory function in vitro and in vivo. They also provide new insights into the mechanisms involved in the development of autoimmune disease in lpr mice.


2006 ◽  
Vol 81 (4) ◽  
pp. 1773-1785 ◽  
Author(s):  
Marta Melar ◽  
David E. Ott ◽  
Thomas J. Hope

ABSTRACT Human immunodeficiency virus (HIV) entry into target cells requires the engagement of receptor and coreceptor by envelope glycoprotein (Env). Coreceptors CCR5 and CXCR4 are chemokine receptors that generate signals manifested as calcium fluxes in response to binding of the appropriate ligand. It has previously been shown that engagement of the coreceptors by HIV Env can also generate Ca2+ fluxing. Since the sensitivity and therefore the physiological consequence of signaling activation in target cells is not well understood, we addressed it by using a microscopy-based approach to measure Ca2+ levels in individual CD4+ T cells in response to low Env concentrations. Monomeric Env subunit gp120 and virion-bound Env were able to activate a signaling cascade that is qualitatively different from the one induced by chemokines. Env-mediated Ca2+ fluxing was coreceptor mediated, coreceptor specific, and CD4 dependent. Comparison of the observed virion-mediated Ca2+ fluxing with the exact number of viral particles revealed that the viral threshold necessary for coreceptor activation of signaling in CD4+ T cells was quite low, as few as two virions. These results indicate that the physiological levels of virion binding can activate signaling in CD4+ T cells in vivo and therefore might contribute to HIV-induced pathogenesis.


2008 ◽  
Vol 122 (10) ◽  
pp. 2280-2285 ◽  
Author(s):  
Carolin Lüking ◽  
Konrad Kronenberger ◽  
Bernhard Frankenberger ◽  
Elfriede Nößner ◽  
Martin Röcken ◽  
...  

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4683-4683
Author(s):  
Dean Lee ◽  
Maureen Aliru ◽  
Cecele J. Denman ◽  
Srinivas S. Somanchi

Abstract Abstract 4683 Natural killer (NK) cells can kill malignant or virus-infected cells through the interaction of activating and inhibitory receptors without needing specific antigen recognition of target cells, and therefor have broad therapeutic applications for treatment of human malignancies. However, due to their limited life-span in vivo and poor expansion in vitro, production of sufficient numbers of NK cells for effective adoptive immunotherapy poses an obstacle. Genetically engineered artificial antigen presenting cells (aAPCs) consisting of K562 modified 4-1BBL and membrane bound IL-15 or IL-21 have been reported for their ability to support ex vivo NK cell proliferation. aAPCs with mbIL-21 were shown to promote increased proliferation of NK cells with shorter telomeres, but differences in in vivo survival or tumor or tissue migration have not been assessed. Tumor and/or tissue migration is primarily mediated by the expression of chemokine receptors. Using aAPCs bearing mbIL15 or mbIL21, we expanded NK cells for 3 weeks and assessed their expression of chemokine receptors, organ migration, and in vivo survival in a xenograft model. Propagated NK cells showed relatively similar levels of low to modest expression of CCR2, CCR7, CXCR4 and CXCR5, and high expression levels of CXCR3. Mean CCR5 expression levels were similar on cells that were positive, but CCR5 was expressed on a higher percentage of NK cells expanded with mbIL-15 than those expanded with mbIL-21. In contrast, about 20% of mbIL-21 expanded NK cells expressed CX3CR1 expression whereas mbIL-15 NK cells showed almost no expression of this receptor. Results from ongoing migration and survival experiments will also be presented. Disclosures: No relevant conflicts of interest to declare.


2000 ◽  
Vol 191 (1) ◽  
pp. 77-88 ◽  
Author(s):  
R.A. Warnock ◽  
J.J. Campbell ◽  
M.E. Dorf ◽  
A. Matsuzawa ◽  
L.M. McEvoy ◽  
...  

Chemokines have been hypothesized to contribute to the selectivity of lymphocyte trafficking not only as chemoattractants, but also by triggering integrin-dependent sticking (arrest) of circulating lymphocytes at venular sites of extravasation. We show that T cells roll on most Peyer's patch high endothelial venules (PP-HEVs), but preferentially arrest in segments displaying high levels of luminal secondary lymphoid tissue chemokine (SLC) (6Ckine, Exodus-2, thymus-derived chemotactic agent 4 [TCA-4]). This arrest is selectively inhibited by functional deletion (desensitization) of CC chemokine receptor 7 (CCR7), the receptor for SLC and for macrophage inflammatory protein (MIP)-3β (EBV-induced molecule 1 ligand chemokine [ELC]), and does not occur in mutant DDD/1 mice that are deficient in these CCR7 ligands. In contrast, pertussis toxin–sensitive B cell sticking does not require SLC or MIP-3β signaling, and occurs efficiently in SLClow/− HEV segments in wild-type mice, and in the SLC-negative HEVs of DDD/1 mice. Remarkably, sites of T and B cell firm adhesion are segregated in PPs, with HEVs supporting B cell accumulation concentrated in or near follicles, the target domain of most B cells entering PPs, whereas T cells preferentially accumulate in interfollicular HEVs. Our findings reveal a fundamental difference in signaling requirements for PP-HEV recognition by T and B cells, and describe an unexpected level of specialization of HEVs that may allow differential, segmental control of lymphocyte subset recruitment into functionally distinct lymphoid microenvironments in vivo.


Blood ◽  
2007 ◽  
Vol 110 (6) ◽  
pp. 1797-1805 ◽  
Author(s):  
Agnete Brunsvik Fredriksen ◽  
Bjarne Bogen

Abstract V regions of monoclonal Ig express an exquisite B-cell tumor–specific antigen called idiotype (Id). Id is a weak antigen and it is important to improve immunogenicity of Id vaccines. Chemokine receptors are expressed on antigen-presenting cells (APCs) and are promising targets for Id vaccines. Here we compare monomeric and dimeric forms of MIP-1α and RANTES that target Id to APCs in a mouse B lymphoma (A20) and a multiple myeloma model (MOPC315). MIP-1α was more potent than RANTES. The dimeric proteins were more potent than monomeric equivalents in short-term assays. When delivered in vivo by intramuscular injection of plasmids followed by electroporation, dimeric proteins efficiently primed APCs in draining lymph nodes for activation and proliferation of Id-specific CD4+ T cells. Good anti-Id antibody responses were obtained, and mice immunized only once were 60% to 80% protected in both tumor models. CD8+ T cells contributed to the protection. Antibody responses and tumor protection were reduced when the human Ig hinge = CH3 dimerization motif was replaced with syngeneic mouse counterparts, indicating that tumor-protective responses were dependent on xenogeneic sequences. The results suggest that bivalency and foreign sequences combine to increase the efficiency of chemokine-Id DNA vaccines.


2018 ◽  
Vol 20 (5) ◽  
pp. 621-638
Author(s):  
O. I. Stepanova ◽  
D. O. Bazhenov ◽  
E. V. Khokhlova ◽  
I. Yu. Kogan ◽  
D. I. Sokolov ◽  
...  

At the present time, a broad spectrum of CD8+ T lymphocyte subsets is revealed, including naïve cells, memory cells and regulatory subpopulations. Along with cells with high cytolytic activity, some subsets with marked regulatory activity were found there. Each subpopulation is characterized by a set of produced mediators, surface and intracellular markers allowing to suggest their differential in vivo functional activity. The present review article proposes a classification of CD8+ Т cells which takes into account their morphological and functional features. According to conventional view, the CD8+ Т lymphocytes is a cell population exhibiting high cytotoxic ability which is of critical significance in pregnancy, under the conditions of semi-allogenic fetal cell invasion into the endometrium. The fraction of CD8+ T cells is rather high in decidual structures. The review discusses the known mechanisms of differentiation regulation, selective migration and activity of CD8+ T cells in decidual membrane and placenta in the course of pregnancy. Perforine and granzyme are the main cytotoxicity factors of CD8+ Т cells. IL-2, IL-5, IL-13, IFNγ, IL-17, TGF-β and IL-10 cytokines are considered regulatory mediators of CD8+ cells. To induce the effector properties of CD8+ T cells, an antigenic stimulation is required, which is provided by interactions between the CD8+ Т cells and activated CD4+ Т cells or dendritic cells, cytokine effects. Specific differentiation of the CD8+ T cells is determined by differences in microenvironvent. In the course of pregnancy, accumulation of CD8+ Т cells is observed in decidual membrane, but their phenotype and functional properties differ from CD8+ Т cells in peripheral blood. At present time, the mechanisms of selective CD8+ T cell migration to decidual membrane are studied. These events are suggested to be mediated by means of CXCR3 and CCR5 chemokine receptors, IL-6 and IL-15 cytokines. The features of CD8+ Т cell activities, and production of some cytokines, e.g., CSF2, IFNγ, IL-1β, IL-2, IL-6, IL-8,IL-10, IL-12 and TNFα in decidual membrane and is of critical significance for effective invasion of trophoblast cells. In turn, the trophoblast and placental cells promote development of regulatory CD8+ Т lymphocytes in decidual membrane, being able to induce CD8+ T cell apoptosis in decidual membrane. Hence, interaction between the maternal CD8+ T cells and trophoblast in the area of uterine-placental contact is an important link during development of immunological tolerance in the maternal/fetal system.


Sign in / Sign up

Export Citation Format

Share Document