scholarly journals Transcription and mRNA export machineries SAGA and TREX-2 maintain monoubiquitinated H2B balance required for DNA repair

2018 ◽  
Vol 217 (10) ◽  
pp. 3382-3397 ◽  
Author(s):  
Federica M. Evangelista ◽  
Anne Maglott-Roth ◽  
Matthieu Stierle ◽  
Laurent Brino ◽  
Evi Soutoglou ◽  
...  

DNA repair is critical to maintaining genome integrity, and its dysfunction can cause accumulation of unresolved damage that leads to genomic instability. The Spt–Ada–Gcn5 acetyltransferase (SAGA) coactivator complex and the nuclear pore–associated transcription and export complex 2 (TREX-2) couple transcription with mRNA export. In this study, we identify a novel interplay between human TREX-2 and the deubiquitination module (DUBm) of SAGA required for genome stability. We find that the scaffold subunit of TREX-2, GANP, positively regulates DNA repair through homologous recombination (HR). In contrast, DUBm adaptor subunits ENY2 and ATXNL3 are required to limit unscheduled HR. These opposite roles are achieved through monoubiquitinated histone H2B (H2Bub1). Interestingly, the activity of the DUBm of SAGA on H2Bub1 is dependent on the integrity of the TREX-2 complex. Thus, we describe the existence of a functional interaction between human TREX-2 and SAGA DUBm that is key to maintaining the H2B/HB2ub1 balance needed for efficient repair and HR.

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 363-363
Author(s):  
Subodh Kumar ◽  
Leutz Buon ◽  
Srikanth Talluri ◽  
Chengcheng Liao ◽  
Jialan Shi ◽  
...  

Identification of mechanisms underlying genomic instability is necessary to understand disease progression, including development of drug resistance. Our previous data demonstrates that dysregulation of DNA repair and maintenance/modification activities (including homologous recombination (HR), apurinic/apyrimidinic nuclease and APOBEC) significantly contribute to genomic instability in multiple myeloma (MM). However, how these and other pathways involved in genomic instability are dysregulated, remains to be explored. Since kinases play a critical role in the regulation of the maintenance of genomic integrity, we have performed a genome-wide kinome profiling to identify those involved in genomic instability in cancer. First, we analyzed genomic database for ten human cancers (including MM) from TCGA with both tumor cell gene expression and SNP/CGH array-based copy number information for each patient.We assessed genomic instability in each patient based on the total number of amplification and deletion events. We next interrogated all 550 kinases expressed in humans and identified those whose expression correlated with copy number alteration (based on FDR ≤ 0.05) in all tumor types. We identified six kinases whose elevated expression correlated with increased genomic instability defined by genomic amplification/deletion events in all ten cancers, including MM. To demonstrate functional relevance of these kinases, we conducted a CRISPR-based loss of function screen (using 3 guides per gene) in MM cells and evaluated the impact of each gene-knockout on micronuclei, a marker of ongoing genomic rearrangements and instability. For all six kinases, at least one guide resulted in ≥ 65% inhibition of micronuclei formation. Moreover, for five out of the six kinases, at least two guides showed ≥ 60% inhibition of micronuclei. All together, these data establishes a strong relevance of these kinases with genomic instability in MM. PDZ Binding Kinase (PBK) was among top kinases impacting genome stability in this data set with 2 out of 3 guides causing > 88% and 3rdguide causing 35% inhibition of micronuclei formation. We further report that inhibition of PBK, by knockdown or small molecule, inhibits DNA breaks, RAD51 recombinase expression and homologous recombination in MM cells. We further investigated molecular mechanisms involved in PBK-mediated genomic instability in MM. Expression profiling using RNA sequencing of MM cells treated with a specific PBK inhibitor showed that top ten pathways downregulated by treatment were mostly DNA repair/recombination followed by replication and G2/M checkpoint. Interestingly, we identified a notable overlap between PBK-regulated genes with FOXM1 target genes. FOXM1 is a major transcriptional regulator of genes involved in DNA repair, G2/M regulation and chromosomal stability. We, therefore, investigated PBK/FOXM1 interaction and show that PBK interacts with FOXM1 in MM cells. Moreover, the inhibition of PBK, by knockdown or small molecule, inhibits phosphorylation of FOXM1 as well as downregulates FOXM1-regulated HR and cell cycle genes RAD51, EXO1 and CDC25A. These results suggest that PBK-dependent phosphorylation of FOXM1 activity controls transcriptional networks involved in genomic instability in MM. Ongoing work is investigating role of PBK and other kinases in progression of MGUS/SMM to active MM and their impact on ongoing genomic changes with influence on multiple DNA repair pathways including HR. In conclusion, we describe a kinase panel that may have significant role in maintaining genome stability, and their perturbation may allow to improve genome stability in MM. Disclosures Munshi: Adaptive: Consultancy; Amgen: Consultancy; Celgene: Consultancy; Janssen: Consultancy; Abbvie: Consultancy; Oncopep: Consultancy; Takeda: Consultancy.


2021 ◽  
Vol 22 (19) ◽  
pp. 10384
Author(s):  
Hirotomo Takatsuka ◽  
Atsushi Shibata ◽  
Masaaki Umeda

Genome integrity is constantly threatened by internal and external stressors, in both animals and plants. As plants are sessile, a variety of environment stressors can damage their DNA. In the nucleus, DNA twines around histone proteins to form the higher-order structure “chromatin”. Unraveling how chromatin transforms on sensing genotoxic stress is, thus, key to understanding plant strategies to cope with fluctuating environments. In recent years, accumulating evidence in plant research has suggested that chromatin plays a crucial role in protecting DNA from genotoxic stress in three ways: (1) changes in chromatin modifications around damaged sites enhance DNA repair by providing a scaffold and/or easy access to DNA repair machinery; (2) DNA damage triggers genome-wide alterations in chromatin modifications, globally modulating gene expression required for DNA damage response, such as stem cell death, cell-cycle arrest, and an early onset of endoreplication; and (3) condensed chromatin functions as a physical barrier against genotoxic stressors to protect DNA. In this review, we highlight the chromatin-level control of genome stability and compare the regulatory systems in plants and animals to find out unique mechanisms maintaining genome integrity under genotoxic stress.


2015 ◽  
Vol 34 (2) ◽  
pp. 200-206 ◽  
Author(s):  
Katja Goričar ◽  
Viljem Kovač ◽  
Janez Jazbec ◽  
Janez Lamovec ◽  
Vita Dolžan

Summary Background: DNA repair mechanisms are essential for maintaining genome stability, and genetic variability in DNA repair genes may contribute to cancer susceptibility. Our aim was to evaluate the influence of polymorphisms in the homologous recombination repair genes XRCC3, RAD51, and NBN on the risk for osteosarcoma. Methods: In total, 79 osteosarcoma cases and 373 controls were genotyped for eight single nucleotide polymorphisms (SNPs) in XRCC3, RAD51, and NBN. Logistic regression was used to determine the association of these SNPs with risk for osteosarcoma. Results: None of the investigated SNPs was associated with risk for osteosarcoma in the whole cohort of patients, however, in patients diagnosed before the age of thirty years XRCC3 rs861539 C>T and NBN rs1805794 G>C were associated with significantly decreased risk for osteosarcoma (P=0.047, OR=0.54, 95% CI=0.30-0.99 and P=0.036, OR=0.42, 95% CI=0.19-0.94, respectively). Moreover, in the carriers of a combination of polymorphic alleles in both SNPs risk for osteosarcoma was decreased even more significantly (Ptrend=0.007). The risk for developing osteosarcoma was the lowest in patients with no wild-type alleles for both SNPs (P=0.039, OR=0.31, 95% CI=0.10-0.94). Conclusions: Our results suggest that polymorphisms in homologous recombination repair genes might contribute to risk for osteosarcoma in patients diagnosed below the age of thirty years.


2006 ◽  
Vol 17 (10) ◽  
pp. 4228-4236 ◽  
Author(s):  
Alwin Köhler ◽  
Pau Pascual-García ◽  
Ana Llopis ◽  
Meritxell Zapater ◽  
Francesc Posas ◽  
...  

Sus1 acts in nuclear mRNA export via its association with the nuclear pore-associated Sac3–Thp1–Cdc31 complex. In addition, Sus1 plays a role in transcription through its interaction with the Spt/Ada/Gcn5 acetyltransferase (SAGA) complex. Here, we have analyzed function and interaction of Sus1 within the SAGA complex. We demonstrate that Sus1 is involved in the SAGA-dependent histone H2B deubiquitinylation and maintenance of normal H3 methylation levels. By deletion analyses, we show that binding of Sus1 to SAGA depends on the deubiquitinylating enzyme Ubp8 and Sgf11. Moreover, a stable subcomplex between Sus1, Sgf11, and Ubp8 could be dissociated from SAGA under high salt conditions. In vivo recruitment of Sus1 to the activated GAL1 promoter depends on Ubp8 and vice versa. In addition, histones coenrich during SAGA purification in a Sus1–Sgf11–Ubp8-dependent way. Interestingly, sgf11 deletion enhances the mRNA export defect observed in sus1Δ cells. Thus, the Sus1–Sgf11–Ubp8 module could work at the junction between SAGA-dependent transcription and nuclear mRNA export.


2007 ◽  
Vol 18 (8) ◽  
pp. 2912-2923 ◽  
Author(s):  
Benoit Palancade ◽  
Xianpeng Liu ◽  
Maria Garcia-Rubio ◽  
Andrès Aguilera ◽  
Xiaolan Zhao ◽  
...  

Increasing evidences suggest that nuclear pore complexes (NPCs) control different aspects of nuclear metabolism, including transcription, nuclear organization, and DNA repair. We previously established that the Nup84 complex, a major NPC building block, is part of a genetic network involved in DNA repair. Here, we show that double-strand break (DSB) appearance is linked to a shared function of the Nup84 and the Nup60/Mlp1–2 complexes. Mutants within these complexes exhibit similar genetic interactions and alteration in DNA repair processes as mutants of the SUMO-protease Ulp1. Consistently, these nucleoporins are required for maintenance of proper Ulp1 levels at NPCs and for the establishment of the appropriate sumoylation of several cellular proteins, including the DNA repair factor Yku70. Moreover, restoration of nuclear envelope-associated Ulp1 in nucleoporin mutants reestablishes proper sumoylation patterns and suppresses DSB accumulation and genetic interactions with DNA repair genes. Our results thus provide a molecular mechanism that underlies the connection between NPC and genome stability.


Genes ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1390
Author(s):  
Upasana Roy ◽  
Eric C. Greene

Homologous recombination (HR) is a mechanism conserved from bacteria to humans essential for the accurate repair of DNA double-stranded breaks, and maintenance of genome integrity. In eukaryotes, the key DNA transactions in HR are catalyzed by the Rad51 recombinase, assisted by a host of regulatory factors including mediators such as Rad52 and Rad51 paralogs. Rad51 paralogs play a crucial role in regulating proper levels of HR, and mutations in the human counterparts have been associated with diseases such as cancer and Fanconi Anemia. In this review, we focus on the Saccharomyces cerevisiae Rad51 paralog complex Rad55–Rad57, which has served as a model for understanding the conserved role of Rad51 paralogs in higher eukaryotes. Here, we discuss the results from early genetic studies, biochemical assays, and new single-molecule observations that have together contributed to our current understanding of the molecular role of Rad55–Rad57 in HR.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Negar Afshar ◽  
Bilge Argunhan ◽  
Maierdan Palihati ◽  
Goki Taniguchi ◽  
Hideo Tsubouchi ◽  
...  

Homologous recombination (HR) is essential for maintaining genome stability. Although Rad51 is the key protein that drives HR, multiple auxiliary factors interact with Rad51 to potentiate its activity. Here, we present an interdisciplinary characterization of the interactions between Rad51 and these factors. Through structural analysis, we identified an evolutionarily conserved acidic patch of Rad51. The neutralization of this patch completely abolished recombinational DNA repair due to defects in the recruitment of Rad51 to DNA damage sites. This acidic patch was found to be important for the interaction with Rad55-Rad57 and essential for the interaction with Rad52. Furthermore, biochemical reconstitutions demonstrated that neutralization of this acidic patch also impaired the interaction with Rad54, indicating that a single motif is important for the interaction with multiple auxiliary factors. We propose that this patch is a fundamental motif that facilitates interactions with auxiliary factors and is therefore essential for recombinational DNA repair.


mBio ◽  
2017 ◽  
Vol 8 (4) ◽  
Author(s):  
Susannah F. Calhoun ◽  
Jake Reed ◽  
Noah Alexander ◽  
Christopher E. Mason ◽  
Kirk W. Deitsch ◽  
...  

ABSTRACT The human malaria parasite Plasmodium falciparum replicates within circulating red blood cells, where it is subjected to conditions that frequently cause DNA damage. The repair of DNA double-stranded breaks (DSBs) is thought to rely almost exclusively on homologous recombination (HR), due to a lack of efficient nonhomologous end joining. However, given that the parasite is haploid during this stage of its life cycle, the mechanisms involved in maintaining genome stability are poorly understood. Of particular interest are the subtelomeric regions of the chromosomes, which contain the majority of the multicopy variant antigen-encoding genes responsible for virulence and disease severity. Here, we show that parasites utilize a competitive balance between de novo telomere addition, also called “telomere healing,” and HR to stabilize chromosome ends. Products of both repair pathways were observed in response to DSBs that occurred spontaneously during routine in vitro culture or resulted from experimentally induced DSBs, demonstrating that both pathways are active in repairing DSBs within subtelomeric regions and that the pathway utilized was determined by the DNA sequences immediately surrounding the break. In combination, these two repair pathways enable parasites to efficiently maintain chromosome stability while also contributing to the generation of genetic diversity. IMPORTANCE Malaria is a major global health threat, causing approximately 430,000 deaths annually. This mosquito-transmitted disease is caused by Plasmodium parasites, with infection with the species Plasmodium falciparum being the most lethal. Mechanisms underlying DNA repair and maintenance of genome integrity in P. falciparum are not well understood and represent a gap in our understanding of how parasites survive the hostile environment of their vertebrate and insect hosts. Our work examines DNA repair in real time by using single-molecule real-time (SMRT) sequencing focused on the subtelomeric regions of the genome that harbor the multicopy gene families important for virulence and the maintenance of infection. We show that parasites utilize two competing molecular mechanisms to repair double-strand breaks, homologous recombination and de novo telomere addition, with the pathway used being determined by the surrounding DNA sequence. In combination, these two pathways balance the need to maintain genome stability with the selective advantage of generating antigenic diversity. IMPORTANCE Malaria is a major global health threat, causing approximately 430,000 deaths annually. This mosquito-transmitted disease is caused by Plasmodium parasites, with infection with the species Plasmodium falciparum being the most lethal. Mechanisms underlying DNA repair and maintenance of genome integrity in P. falciparum are not well understood and represent a gap in our understanding of how parasites survive the hostile environment of their vertebrate and insect hosts. Our work examines DNA repair in real time by using single-molecule real-time (SMRT) sequencing focused on the subtelomeric regions of the genome that harbor the multicopy gene families important for virulence and the maintenance of infection. We show that parasites utilize two competing molecular mechanisms to repair double-strand breaks, homologous recombination and de novo telomere addition, with the pathway used being determined by the surrounding DNA sequence. In combination, these two pathways balance the need to maintain genome stability with the selective advantage of generating antigenic diversity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brandon J. Payliss ◽  
Ayushi Patel ◽  
Anneka C. Sheppard ◽  
Haley D. M. Wyatt

All organisms depend on the ability of cells to accurately duplicate and segregate DNA into progeny. However, DNA is frequently damaged by factors in the environment and from within cells. One of the most dangerous lesions is a DNA double-strand break. Unrepaired breaks are a major driving force for genome instability. Cells contain sophisticated DNA repair networks to counteract the harmful effects of genotoxic agents, thus safeguarding genome integrity. Homologous recombination is a high-fidelity, template-dependent DNA repair pathway essential for the accurate repair of DNA nicks, gaps and double-strand breaks. Accurate homologous recombination depends on the ability of cells to remove branched DNA structures that form during repair, which is achieved through the opposing actions of helicases and structure-selective endonucleases. This review focuses on a structure-selective endonuclease called SLX1-SLX4 and the macromolecular endonuclease complexes that assemble on the SLX4 scaffold. First, we discuss recent developments that illuminate the structure and biochemical properties of this somewhat atypical structure-selective endonuclease. We then summarize the multifaceted roles that are fulfilled by human SLX1-SLX4 and its associated endonucleases in homologous recombination and genome stability. Finally, we discuss recent work on SLX4-binding proteins that may represent integral components of these macromolecular nuclease complexes, emphasizing the structure and function of a protein called SLX4IP.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fei Qu ◽  
Pawlos S. Tsegay ◽  
Yuan Liu

N6-methyladenosine (m6A) modification in mRNAs and non-coding RNAs is a newly identified epitranscriptomic mark. It provides a fine-tuning of gene expression to serve as a cellular response to endogenous and exogenous stimuli. m6A is involved in regulating genes in multiple cellular pathways and functions, including circadian rhythm, cell renewal, differentiation, neurogenesis, immunity, among others. Disruption of m6A regulation is associated with cancer, obesity, and immune diseases. Recent studies have shown that m6A can be induced by oxidative stress and DNA damage to regulate DNA repair. Also, deficiency of the m6A eraser, fat mass obesity-associated protein (FTO) can increase cellular sensitivity to genotoxicants. These findings shed light on the novel roles of m6A in modulating DNA repair and genome integrity and stability through responding to DNA damage. In this mini-review, we discuss recent progress in the understanding of a unique role of m6As in mRNAs, lncRNAs, and microRNAs in DNA damage response and regulation of DNA repair and genome integrity and instability.


Sign in / Sign up

Export Citation Format

Share Document