scholarly journals Stress granules display bistable dynamics modulated by Cdk

2021 ◽  
Vol 220 (3) ◽  
Author(s):  
Galal Yahya ◽  
Alexis P. Pérez ◽  
Mònica B. Mendoza ◽  
Eva Parisi ◽  
David F. Moreno ◽  
...  

Stress granules (SGs) are conserved biomolecular condensates that originate in response to many stress conditions. These membraneless organelles contain nontranslating mRNAs and a diverse subproteome, but our knowledge of their regulation and functional relevance is still incipient. Here, we describe a mutual-inhibition interplay between SGs and Cdc28, the budding yeast Cdk. Among Cdc28 interactors acting as negative modulators of Start, we have identified Whi8, an RNA-binding protein that localizes to SGs and recruits the mRNA of CLN3, the most upstream G1 cyclin, for efficient translation inhibition and Cdk inactivation under stress. However, Whi8 also contributes to recruiting Cdc28 to SGs, where it acts to promote their dissolution. As predicted by a mutual-inhibition framework, the SG constitutes a bistable system that is modulated by Cdk. Since mammalian cells display a homologous mechanism, we propose that the opposing functions of specific mRNA-binding proteins and Cdk’s subjugate SG dynamics to a conserved hysteretic switch.

Author(s):  
G Yahya ◽  
AP Pérez ◽  
MB Mendoza ◽  
E Parisi ◽  
DF Moreno ◽  
...  

AbstractStress granules are conserved biomolecular condensates that originate in response to many stress conditions. These membraneless organelles contain nontranslating mRNAs and a diverse subproteome, but our knowledge on their regulation and functional relevance is still incipient. Here we describe a mutual-inhibition interplay between stress granules and Cdc28, the budding yeast Cdk. Amongst Cdc28 interactors acting as negative modulators of Start we have identified Whi8, an RNA-binding protein that localizes to SGs and recruits the mRNA of CLN3, the most upstream G1 cyclin, for efficient translation inhibition and Cdk inactivation under stress. However, Whi8 also contributes to recruiting Cdc28 to SGs, where it acts to promote their dissolution. As predicted by a mutual-inhibition framework, the SG constitutes a bistable system that is modulated by Cdk. Since mammalian cells display a homologous mechanism, we propose that the opposing functions of specific mRNA-binding proteins and Cdks subjugate SG dynamics to a conserved hysteretic switch.


2006 ◽  
Vol 26 (15) ◽  
pp. 5744-5758 ◽  
Author(s):  
Sonia Guil ◽  
Jennifer C. Long ◽  
Javier F. Cáceres

ABSTRACT hnRNP A1 is a nucleocytoplasmic shuttling protein that is involved in many aspects of mRNA metabolism. We have previously shown that activation of the p38 stress-signaling pathway in mammalian cells results in both hyperphosphorylation and cytoplasmic accumulation of hnRNP A1, affecting alternative splicing regulation in vivo. Here we show that the stress-induced cytoplasmic accumulation of hnRNP A1 occurs in discrete phase-dense particles, the cytoplasmic stress granules (SGs). Interestingly, mRNA-binding activity is required for both phosphorylation of hnRNP A1 and localization to SGs. We also show that these effects are mediated by the Mnk1/2 protein kinases that act downstream of p38. Finally, depletion of hnRNP A1 affects the recovery of cells from stress, suggesting a physiologically significant role for hnRNP A1 in the stress response. Our data are consistent with a model whereby hnRNP A1 recruitment to SGs involves Mnk1/2-dependent phosphorylation of mRNA-bound hnRNP A1.


2018 ◽  
Vol 217 (4) ◽  
pp. 1303-1318 ◽  
Author(s):  
Benedikt Niewidok ◽  
Maxim Igaev ◽  
Abel Pereira da Graca ◽  
Andre Strassner ◽  
Christine Lenzen ◽  
...  

Stress granules (SGs) are cytosolic, nonmembranous RNA–protein complexes. In vitro experiments suggested that they are formed by liquid–liquid phase separation; however, their properties in mammalian cells remain unclear. We analyzed the distribution and dynamics of two paradigmatic RNA-binding proteins (RBPs), Ras GTPase-activating protein SH3-domain–binding protein (G3BP1) and insulin-like growth factor II mRNA-binding protein 1 (IMP1), with single-molecule resolution in living neuronal cells. Both RBPs exhibited different exchange kinetics between SGs. Within SGs, single-molecule localization microscopy revealed distributed hotspots of immobilized G3BP1 and IMP1 that reflect the presence of relatively immobile nanometer-sized nanocores. We demonstrate alternating binding in nanocores and anomalous diffusion in the liquid phase with similar characteristics for both RBPs. Reduction of low-complexity regions in G3BP1 resulted in less detectable mobile molecules in the liquid phase without change in binding in nanocores. The data provide direct support for liquid droplet behavior of SGs in living cells and reveal transient binding of RBPs in nanocores. Our study uncovers a surprising disconnect between SG partitioning and internal diffusion and interactions of RBPs.


2005 ◽  
Vol 393 (1) ◽  
pp. 245-254 ◽  
Author(s):  
Catherine Martel ◽  
Paolo Macchi ◽  
Luc Furic ◽  
Michael A. Kiebler ◽  
Luc Desgroseillers

Mammalian Stau1 (Staufen1), a modular protein composed of several dsRBDs (double-stranded RNA-binding domains), is probably involved in mRNA localization. Although Stau1 is mostly described in association with the rough endoplasmic reticulum and ribosomes in the cytoplasm, recent studies suggest that it may transit through the nucleus/nucleolus. Using a sensitive yeast import assay, we show that Stau1 is actively imported into the nucleus through a newly identified bipartite nuclear localization signal. As in yeast, the bipartite nuclear localization signal is necessary for Stau1 nuclear import in mammalian cells. It is also required for Stau1 nucleolar trafficking. However, Stau1 nuclear transit seems to be regulated by mechanisms that involve cytoplasmic retention and/or facilitated nuclear export. Cytoplasmic retention is mainly achieved through the action of dsRBD3, with dsRBD2 playing a supporting role in this function. Similarly, dsRBD3, but not its RNA-binding activity, is critical for Stau1 nucleolar trafficking. The function of dsRBD3 is strengthened or stabilized by the presence of dsRBD4 but prevented by the interdomain between dsRBD2 and dsRBD3. Altogether, these results suggest that Stau1 nuclear trafficking is a highly regulated process involving several determinants. The presence of Stau1 in the nucleus/nucleolus suggests that it may be involved in ribonucleoprotein formation in the nucleus and/or in other nuclear functions not necessarily related to mRNA transport.


1992 ◽  
Vol 12 (1) ◽  
pp. 164-171
Author(s):  
M J Matunis ◽  
W M Michael ◽  
G Dreyfuss

At least 20 major proteins make up the ribonucleoprotein (RNP) complexes of heterogeneous nuclear RNA (hnRNA) in mammalian cells. Many of these proteins have distinct RNA-binding specificities. The abundant, acidic heterogeneous nuclear RNP (hnRNP) K and J proteins (66 and 64 kDa, respectively, by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) are unique among the hnRNP proteins in their binding preference: they bind tenaciously to poly(C), and they are the major oligo(C)- and poly(C)-binding proteins in human HeLa cells. We purified K and J from HeLa cells by affinity chromatography and produced monoclonal antibodies to them. K and J are immunologically related and conserved among various vertebrates. Immunofluorescence microscopy with antibodies shows that K and J are located in the nucleoplasm. cDNA clones for K were isolated, and their sequences were determined. The predicted amino acid sequence of K does not contain an RNP consensus sequence found in many characterized hnRNP proteins and shows no extensive homology to sequences of any known proteins. The K protein contains two internal repeats not found in other known proteins, as well as GlyArgGlyGly and GlyArgGlyGlyPhe sequences, which occur frequently in many RNA-binding proteins. Overall, K represents a novel type of hnRNA-binding protein. It is likely that K and J play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Danish Sayed

Stress granules (SGs) are dynamic, microscopically visible, cytoplasmic bodies that play a major role in mRNA metabolism (e.g. sorting, storage, decay) and induced in cells during stress conditions like starvation, oxidative strain or growth. With substantial role in cancer and neurodegenerative diseases, these granules have never been studied during cardiac hypertrophy, or in the heart in general. Several studies have identified independent proteins, mostly mRNA binding proteins that are part of these granules, some of which are sufficient to nucleate the assembly in quiescent cells even without stress. One such mRNA binding protein is Ras GTPase-activating protein SH3 domain binding protein 1 (G3BP1), which increases during cardiac hypertrophy via posttranscriptional regulation. Thus, we hypothesized that G3BP1 might be involved in the induction of SGs during hypertrophy and hence in regulating mRNA processing and gene expression. Our aim was to investigate, 1) if these SGs appear in hypertrophied hearts and 2) if G3BP1 is necessary and sufficient to induce them during hypertrophic stimuli. In vivo staining of TIA-1/TIAR (SG marker) in mouse hearts subjected to sham or transaortic coarctation (TAC) surgeries showed accumulation of these granules with cardiac hypertrophy. Similar induction was seen in isolated, cultured, rat neonatal cardiac myocytes with hypertrophic stimulation (Endothelin1) or overexpression of G3BP1 alone (>60% of myocytes stained for SG). Conversely, switch to growth-inhibited conditions or knockdown of G3BP1 in hypertrophying myocytes was sufficient to prevent the assembly of these structures. Co-staining with other components of these granules like TIA-1/TIAR or proteins specific to P bodies, like decapping enzyme 1 validated these structures as SGs in cardiac myocytes. Interestingly, a long non-coding RNA, Gas5 (Growth Arrest Specific 5) that is validated binding partner of G3BP1 sequestered to perinuclear focal locations in myocytes stimulated with ET1, suggesting growth-induced recruitment to SGs. While we are still in process of examining G3BP1 targets that are recruited to SGs and their role in hypertrophy development, we have concluded that G3BP1 is required for the induction of SGs during cardiac hypertrophy


2018 ◽  
Author(s):  
Michèle Brocard ◽  
Valentina Iadevaia ◽  
Philipp Klein ◽  
Belinda Hall ◽  
Glenys Lewis ◽  
...  

ABSTRACTDuring viral infection, the accumulation of RNA replication intermediates or viral proteins imposes major stress on the host cell. In response, cellular stress pathways can rapidly impose defence mechanisms by shutting off the protein synthesis machinery, which viruses depend on, and triggering the accumulation of mRNAs into stress granules to limit the use of energy and nutrients. Because this threatens viral gene expression, viruses need to evade these pathways to propagate. Human norovirus is responsible for gastroenteritis outbreaks worldwide. Previously we showed that murine norovirus (MNV) regulates the activity of eukaryotic initiation factors (eIFs). Here we examined how MNV interacts with the eIF2α signaling axis controlling translation and stress granules accumulation. We show that while MNV infection represses host cell translation, it results in the assembly of virus-specific granules rather than stress granules. Further mechanistic analyses revealed that eIF2α signaling is uncoupled from translational stalling. Moreover the interaction of the RNA-binding protein G3BP1 with viral factors together with a redistribution of its cellular interacting partners could explain norovirus evasion of stress granules assembly. These results identify novel strategies by which norovirus ensure efficient replication propagation by manipulating the host stress response.


2021 ◽  
Vol 22 (18) ◽  
pp. 9980
Author(s):  
Ganesh R. Koshre ◽  
Feba Shaji ◽  
Neeraja K. Mohanan ◽  
Nimmy Mohan ◽  
Jamshaid Ali ◽  
...  

Star-PAP is a non-canonical poly(A) polymerase that selects mRNA targets for polyadenylation. Yet, genome-wide direct Star-PAP targets or the mechanism of specific mRNA recognition is still vague. Here, we employ HITS-CLIP to map the cellular Star-PAP binding landscape and the mechanism of global Star-PAP mRNA association. We show a transcriptome-wide association of Star-PAP that is diminished on Star-PAP depletion. Consistent with its role in the 3′-UTR processing, we observed a high association of Star-PAP at the 3′-UTR region. Strikingly, there is an enrichment of Star-PAP at the coding region exons (CDS) in 42% of target mRNAs. We demonstrate that Star-PAP binding de-stabilises these mRNAs indicating a new role of Star-PAP in mRNA metabolism. Comparison with earlier microarray data reveals that while UTR-associated transcripts are down-regulated, CDS-associated mRNAs are largely up-regulated on Star-PAP depletion. Strikingly, the knockdown of a Star-PAP coregulator RBM10 resulted in a global loss of Star-PAP association on target mRNAs. Consistently, RBM10 depletion compromises 3′-end processing of a set of Star-PAP target mRNAs, while regulating stability/turnover of a different set of mRNAs. Our results establish a global profile of Star-PAP mRNA association and a novel role of Star-PAP in the mRNA metabolism that requires RBM10-mRNA association in the cell.


2019 ◽  
Author(s):  
Kathrin Bajak ◽  
Kevin Leiss ◽  
Christine Clayton ◽  
Esteban Erben

AbstractKinetoplastids rely heavily on post-transcriptional mechanisms for control of gene expression, and on RNA-binding proteins that regulate mRNA splicing, translation and decay. Trypanosoma brucei ERBP1 (Tb927.10.14150) and ERBP2 (Tb927.9.9550) were previously identified as mRNA binding proteins that lack canonical RNA-binding domains. We here show that ERBP1 is associated with the endoplasmic reticulum, like ERBP2, and that the two proteins interact in vivo. Loss of ERBP1 from bloodstream-form T. brucei initially resulted in a growth defect but proliferation was restored after more prolonged cultivation. Results from a pull-down of tagged ERBP1 suggest that it preferentially binds to ribosomal protein mRNAs. The ERBP1 sequence resembles that of Saccharomyces cerevisiae Bfr1, which also localises to the endoplasmic reticulum and binds to ribosomal protein mRNAs. However, unlike Bfr1, ERBP1 does not bind to mRNAs encoding secreted proteins, and it is also not recruited to stress granules after starvation.


Author(s):  
Hua Jin ◽  
Daxiang Na ◽  
Reazur Rahman ◽  
Weijin Xu ◽  
Allegra Fieldsend ◽  
...  

Abstract4E-BP (eIF4E-BP) represses translation initiation by binding to the 5’cap-binding protein eIF4E and inhibiting its activity. Although 4E-BP has been shown to be important in growth control, stress response, cancer, neuronal activity and mammalian circadian rhythms, it is not understood how it preferentially represses a subset of mRNAs. We successfully used hyperTRIBE (Targets of RNA-binding proteins identified by editing) to identify in vivo 4E-BP mRNA targets in both Drosophila and mammals under conditions known to activate 4E-BP. The protein associates with specific mRNAs, and ribosome profiling data show that mTOR inhibition changes the translational efficiency of 4E-BP TRIBE targets compared to non-targets. In both systems, these targets have specific motifs and are enriched in translation-related pathways, which correlate well with the known activity of 4E-BP and suggest that it modulates the binding specificity of eIF4E and contributes to mTOR translational specificity.


Sign in / Sign up

Export Citation Format

Share Document