scholarly journals Ubiquitous membrane-bound DNase activity in podosomes and invadopodia

2021 ◽  
Vol 220 (7) ◽  
Author(s):  
Kaushik Pal ◽  
Yuanchang Zhao ◽  
Yongliang Wang ◽  
Xuefeng Wang

Podosomes and invadopodia, collectively termed invadosomes, are adhesive and degradative membrane structures formed in many types of cells and are well known for recruiting various proteases. However, another major class of degradative enzymes, deoxyribonuclease (DNase), remains unconfirmed and not studied in invadosomes. Here, using surface-immobilized nuclease sensor (SNS), we demonstrated that invadosomes recruit DNase to their core regions, which degrade extracellular double-stranded DNA. We further identified the DNase as GPI-anchored membrane-bound DNase X. DNase recruitment is ubiquitous and consistent in invadosomes of all tested cell types. DNase activity exhibits within a minute after actin nucleation, functioning concomitantly with protease in podosomes but preceding it in invadopodia. We further showed that macrophages form DNase-active podosome rosettes surrounding bacteria or micropatterned antigen islets, and the podosomes directly degrade bacterial DNA on a surface, exhibiting an apparent immunological function. Overall, this work reports DNase in invadosomes for the first time, suggesting a richer arsenal of degradative enzymes in invadosomes than known before.

2020 ◽  
Author(s):  
Kaushik Pal ◽  
Yuanchang Zhao ◽  
Yongliang Wang ◽  
Xuefeng Wang

Podosomes and invadopodia, collectively termed invadosomes, are important adhesive and degradative units formed in macrophages, osteoclasts, dendritic cells, cancer cells, and many other cell types. Invadosomes are well known for recruiting proteases that degrade matrix proteins and facilitate cell invasion. In contrast to the extensively studied proteases, another important class of degradative enzymes, DNase, remains uninvestigated and in fact, unknown in invadosomes. Using surface nuclease sensor (SNS), which reports deoxyribonuclease (DNase) activity on the cell membrane by fluorescence signal, we revealed that invadosomes, regardless of cell types or species, universally recruit DNase and readily degrade extracellular double-stranded DNA (dsDNA). We identified the recruited DNase as GPI-anchored membrane protein DNase X which functions locally at the cell-substrate interface and is co-localized with the actin cores of the invadosomes. DNase recruitment is highly consistent and rapid in invadosomes. Co-imaging of F-actin and DNase activity shows that 46-86% invadosomes (dependent on cell types) have associated DNase activities. Time series imaging shows that DNase becomes active within a minute after the actin nucleation, functioning concomitantly with protease activity in podosomes but preceding it in invadopodia. Overall, this discovery suggests a richer arsenal of degradative enzymes in invadosomes at the cell-substrate interface. This work would likely prompt more studies to investigate DNase in invadosomes, in particular, to understand the physiological role of invadosome-associated membrane DNase in cell functions such as immune response, cell migration, matrix remodeling, etc.


2016 ◽  
Vol 113 (9) ◽  
pp. 2496-2501 ◽  
Author(s):  
Marleen van Wolferen ◽  
Alexander Wagner ◽  
Chris van der Does ◽  
Sonja-Verena Albers

The intercellular transfer of DNA is a phenomenon that occurs in all domains of life and is a major driving force of evolution. Upon UV-light treatment, cells of the crenarchaeal genus Sulfolobus express Ups pili, which initiate cell aggregate formation. Within these aggregates, chromosomal DNA, which is used for the repair of DNA double-strand breaks, is exchanged. Because so far no clear homologs of bacterial DNA transporters have been identified among the genomes of Archaea, the mechanisms of archaeal DNA transport have remained a puzzling and underinvestigated topic. Here we identify saci_0568 and saci_0748, two genes from Sulfolobus acidocaldarius that are highly induced upon UV treatment, encoding a transmembrane protein and a membrane-bound VirB4/HerA homolog, respectively. DNA transfer assays showed that both proteins are essential for DNA transfer between Sulfolobus cells and act downstream of the Ups pili system. Our results moreover revealed that the system is involved in the import of DNA rather than the export. We therefore propose that both Saci_0568 and Saci_0748 are part of a previously unidentified DNA importer. Given the fact that we found this transporter system to be widely spread among the Crenarchaeota, we propose to name it the Crenarchaeal system for exchange of DNA (Ced). In this study we have for the first time to our knowledge described an archaeal DNA transporter.


Author(s):  
J. Chakraborty ◽  
A. P. Sinha Hikim ◽  
J. S. Jhunjhunwala

Although the presence of annulate lamellae was noted in many cell types, including the rat spermatogenic cells, this structure was never reported in the Sertoli cells of any rodent species. The present report is based on a part of our project on the effect of torsion of the spermatic cord to the contralateral testis. This paper describes for the first time, the fine structural details of the annulate lamellae in the Sertoli cells of damaged testis from guinea pigs.One side of the spermatic cord of each of six Hartly strain adult guinea pigs was surgically twisted (540°) under pentobarbital anesthesia (1). Four months after induction of torsion, animals were sacrificed, testes were excised and processed for the light and electron microscopic investigations. In the damaged testis, the majority of seminiferous tubule contained a layer of Sertoli cells with occasional spermatogonia (Fig. 1). Nuclei of these Sertoli cells were highly pleomorphic and contained small chromatinic clumps adjacent to the inner aspect of the nuclear envelope (Fig. 2).


2021 ◽  
Vol 43 (2) ◽  
pp. 767-781
Author(s):  
Vanessa Pinatto Gaspar ◽  
Anelise Cardoso Ramos ◽  
Philippe Cloutier ◽  
José Renato Pattaro Junior ◽  
Francisco Ferreira Duarte Junior ◽  
...  

KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein–protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 640
Author(s):  
Natalia R. Moyetta ◽  
Fabián O. Ramos ◽  
Jimena Leyria ◽  
Lilián E. Canavoso ◽  
Leonardo L. Fruttero

Hemocytes, the cells present in the hemolymph of insects and other invertebrates, perform several physiological functions, including innate immunity. The current classification of hemocyte types is based mostly on morphological features; however, divergences have emerged among specialists in triatomines, the insect vectors of Chagas’ disease (Hemiptera: Reduviidae). Here, we have combined technical approaches in order to characterize the hemocytes from fifth instar nymphs of the triatomine Dipetalogaster maxima. Moreover, in this work we describe, for the first time, the ultrastructural features of D. maxima hemocytes. Using phase contrast microscopy of fresh preparations, five hemocyte populations were identified and further characterized by immunofluorescence, flow cytometry and transmission electron microscopy. The plasmatocytes and the granulocytes were the most abundant cell types, although prohemocytes, adipohemocytes and oenocytes were also found. This work sheds light on a controversial aspect of triatomine cell biology and physiology setting the basis for future in-depth studies directed to address hemocyte classification using non-microscopy-based markers.


1989 ◽  
Vol 262 (1) ◽  
pp. 83-89 ◽  
Author(s):  
K J Föhr ◽  
J Scott ◽  
G Ahnert-Hilger ◽  
M Gratzl

The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ compartment of endocrine cells was studied with alpha-toxin- and digitonin-permeabilized rat insulinoma (RINA2) and rat pheochromocytoma (PC12) cells. The Ca2+ uptake was ATP-dependent, and submicromolar concentrations of IP3 specifically released the stored Ca2+. Half-maximal Ca2+ release was observed with 0.25-0.5 mumol of IP3/l, and the amount of Ca2+ released due to IP3 could be enhanced by additional loading of the Ca2+ compartment. Consecutive additions of the same concentration of IP3 for 1-2 h always released the same amount of Ca2+ without desensitization, providing an ideal basis to further characterize the IP3-induced Ca2+ release. Here we describe for the first time a reversible inhibitory effect of decavanadate on the IP3-induced Ca2+ release. Among the vanadium species tested (decavanadate, oligovanadate and monovanadate), only decavanadate was inhibitory, with a half-maximal effect at 5 mumol/l in both cell types. The effect of decavanadate could be overcome by increasing the amount of sequestered Ca2+ or added IP3. Decavanadate did not affect the ATP-driven Ca2+ uptake but oligovanadate was inhibitory on Ca2+ uptake. p-Hydroxymercuribenzoate (pHMB) at concentrations between 10 and 30 mumol/l also inhibited the Ca2+ release due to IP3. Thiol compounds such as dithiothreitol (DTT; 1 mmol/l) added before pHMB removed all its inhibitory effect on the IP3-induced Ca2+ release, whereas the inhibition caused by decavanadate was unaffected by DTT. Thus, the decavanadate-dependent inhibition functions by a distinctly different mechanism than pHMB and could serve as a specific tool to analyse various aspects of the IP3-induced Ca2+ release within endocrine cells.


1989 ◽  
Vol 92 (2) ◽  
pp. 231-239
Author(s):  
P.I. Francz ◽  
K. Bayreuther ◽  
H.P. Rodemann

Methods for the selective enrichment of various subpopulations of the human skin fibroblast cell line HH-8 have been developed. These methods permit the selection of homogeneous populations of the three mitotic fibroblast cell types MF I, II and III, and the four postmitotic cell types PMF IV, V, VI and VII. These seven cell types exhibit differentiation-dependent and cell-type-specific patterns of [35S]methionine-labelled polypeptides in total soluble cytoplasmic and nuclear proteins, also in membrane-bound proteins, and in secreted proteins. In the differentiation sequence MF II-MF III-PMF IV - PMF V - PMF VI 14 cell-type-specific marker proteins have been found in the cytoplasmic and nuclear fraction, also 24 cell-type-specific marker proteins have been found in the membrane-bound protein fraction, and 11 cell-type-specific marker proteins in the secreted protein fraction. Markers in spontaneously arising and experimentally selected or induced populations of a single fibroblast cell type were found to be identical.


2018 ◽  
Vol 218 (1) ◽  
pp. 83-96 ◽  
Author(s):  
Lena K. Schroeder ◽  
Andrew E.S. Barentine ◽  
Holly Merta ◽  
Sarah Schweighofer ◽  
Yongdeng Zhang ◽  
...  

The endoplasmic reticulum (ER) is composed of interconnected membrane sheets and tubules. Superresolution microscopy recently revealed densely packed, rapidly moving ER tubules mistaken for sheets by conventional light microscopy, highlighting the importance of revisiting classical views of ER structure with high spatiotemporal resolution in living cells. In this study, we use live-cell stimulated emission depletion (STED) microscopy to survey the architecture of the ER at 50-nm resolution. We determine the nanoscale dimensions of ER tubules and sheets for the first time in living cells. We demonstrate that ER sheets contain highly dynamic, subdiffraction-sized holes, which we call nanoholes, that coexist with uniform sheet regions. Reticulon family members localize to curved edges of holes within sheets and are required for their formation. The luminal tether Climp63 and microtubule cytoskeleton modulate their nanoscale dynamics and organization. Thus, by providing the first quantitative analysis of ER membrane structure and dynamics at the nanoscale, our work reveals that the ER in living cells is not limited to uniform sheets and tubules; instead, we suggest the ER contains a continuum of membrane structures that includes dynamic nanoholes in sheets as well as clustered tubules.


2001 ◽  
Vol 153 (4) ◽  
pp. 823-834 ◽  
Author(s):  
Reto Caldelari ◽  
Alain de Bruin ◽  
Dominique Baumann ◽  
Maja M. Suter ◽  
Christiane Bierkamp ◽  
...  

In pemphigus vulgaris (PV), autoantibody binding to desmoglein (Dsg) 3 induces loss of intercellular adhesion in skin and mucous membranes. Two hypotheses are currently favored to explain the underlying molecular mechanisms: (a) disruption of adhesion through steric hindrance, and (b) interference of desmosomal cadherin-bound antibody with intracellular events, which we speculated to involve plakoglobin. To investigate the second hypothesis we established keratinocyte cultures from plakoglobin knockout (PG−/−) embryos and PG+/+ control mice. Although both cell types exhibited desmosomal cadherin-mediated adhesion during calcium-induced differentiation and bound PV immunoglobin (IgG) at their cell surface, only PG+/+ keratinocytes responded with keratin retraction and loss of adhesion. When full-length plakoglobin was reintroduced into PG−/− cells, responsiveness to PV IgG was restored. Moreover, in these cells like in PG+/+ keratinocytes, PV IgG binding severely affected the linear distribution of plakoglobin at the plasma membrane. Taken together, the establishment of an in vitro model using PG+/+ and PG−/− keratinocytes allowed us (a) to exclude the steric hindrance only hypothesis, and (b) to demonstrate for the first time that plakoglobin plays a central role in PV, a finding that will provide a novel direction for investigations of the molecular mechanisms leading to PV, and on the function of plakoglobin in differentiating keratinocytes.


Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2248
Author(s):  
Stephen P. Goff

Retroviral infection delivers an RNA genome into the cytoplasm that serves as the template for the synthesis of a linear double-stranded DNA copy by the viral reverse transcriptase. Within the nucleus this linear DNA gives rise to extrachromosomal circular forms, and in a key step of the life cycle is inserted into the host genome to form the integrated provirus. The unintegrated DNA forms, like those of DNAs entering cells by other means, are rapidly loaded with nucleosomes and heavily silenced by epigenetic histone modifications. This review summarizes our present understanding of the silencing machinery for the DNAs of the mouse leukemia viruses and human immunodeficiency virus type 1. We consider the potential impact of the silencing on virus replication, on the sensing of the virus by the innate immune system, and on the formation of latent proviruses. We also speculate on the changeover to high expression from the integrated proviruses in permissive cell types, and briefly consider the silencing of proviruses even after integration in embryonic stem cells and other developmentally primitive cell types.


Sign in / Sign up

Export Citation Format

Share Document