The galactic disk surface mass density and the Galactic force K(z) at Z = 1.1 kiloparsecs

1991 ◽  
Vol 367 ◽  
pp. L9 ◽  
Author(s):  
Konrad Kuijken ◽  
Gerard Gilmore
2016 ◽  
Vol 11 (S321) ◽  
pp. 267-267
Author(s):  
S. Aniyan ◽  
K. C. Freeman ◽  
M. Arnaboldi ◽  
O. Gerhard ◽  
L. Coccato ◽  
...  

AbstractThe decomposition of the 21 cm rotation curve of galaxies into contribution from the disk and dark halo depends on the adopted mass to light ratio (M/L) of the disk. Given the vertical velocity dispersion (σz) of stars in the disk and its scale height (h), the disk surface density and hence the M/L can be estimated. Earlier works have used this technique to conclude that galaxy disks are submaximal. Here we address an important conceptual problem: σz and h must pertain to the same population. Our analysis concludes that previous studies underestimate the disk surface mass density by ~ 2, sufficient to make a maximal disk for M74 appear like a submaximal disk.


Author(s):  
Francesco D’Eugenio ◽  
Matthew Colless ◽  
Nicholas Scott ◽  
Arjen van der Wel ◽  
Roger L Davies ◽  
...  

Abstract We study the Fundamental Plane (FP) for a volume- and luminosity-limited sample of 560 early-type galaxies from the SAMI survey. Using r −band sizes and luminosities from new Multi-Gaussian Expansion (MGE) photometric measurements, and treating luminosity as the dependent variable, the FP has coefficients a = 1.294 ± 0.039, b = 0.912 ± 0.025, and zero-point c = 7.067 ± 0.078. We leverage the high signal-to-noise of SAMI integral field spectroscopy, to determine how structural and stellar-population observables affect the scatter about the FP. The FP residuals correlate most strongly (8σ significance) with luminosity-weighted simple-stellar-population (SSP) age. In contrast, the structural observables surface mass density, rotation-to-dispersion ratio, Sérsic index and projected shape all show little or no significant correlation. We connect the FP residuals to the empirical relation between age (or stellar mass-to-light ratio ϒ⋆ ) and surface mass density, the best predictor of SSP age amongst parameters based on FP observables. We show that the FP residuals (anti-)correlate with the residuals of the relation between surface density and ϒ⋆ . This correlation implies that part of the FP scatter is due to the broad age and ϒ⋆ distribution at any given surface mass density. Using virial mass and ϒ⋆ we construct a simulated FP and compare it to the observed FP. We find that, while the empirical relations between observed stellar population relations and FP observables are responsible for most (75 per cent) of the FP scatter, on their own they do not explain the observed tilt of the FP away from the virial plane.


2016 ◽  
Vol 12 (S323) ◽  
pp. 284-287
Author(s):  
S. Aniyan ◽  
K. C. Freeman ◽  
M. Arnaboldi ◽  
O. Gerhard ◽  
L. Coccato ◽  
...  

AbstractThe decomposition of the 21 cm rotation curve of galaxies into contribution from the disk and dark halo depends on the adopted mass to light ratio (M/L) of the disk. Given the vertical velocity dispersion (σz) of stars in the disk and its scale height (hz), the disk surface density and hence the M/L can be estimated. Earlier works have used this technique to conclude that galaxy disks are submaximal. Here we address an important conceptual problem: star-forming spirals have an old (kinematically hot) disk population and a young cold disk population. Both of these populations contribute to the integrated light spectra from which σz is measured. The measured scale height hz is for the old disk population. In the Jeans equation, σz and hz must pertain to the same population. We have developed techniques to extract the velocity dispersion of the old disk from integrated light spectra and from samples of planetary nebulae. We present the analysis of the disk kinematics of the galaxy NGC 628 using IFU data in the inner regions and planetary nebulae as tracers in the outer regions of the disk. We demonstrate that using the scale height of the old thin disk with the vertical velocity dispersion of the same population, traced by PNe, results in a maximal disk for NGC 628. Our analysis concludes that previous studies underestimate the disk surface mass density by ~ 2, sufficient to make a maximal disk for NGC 628 appear like a submaximal disk.


2017 ◽  
Vol 13 (S334) ◽  
pp. 304-305
Author(s):  
Jorrit H. J. Hagen ◽  
Amina Helmi

AbstractWe investigate the kinematics of red clump stars in the Solar neighbourhood by combining data from the RAVE survey with the TGAS dataset presented in Gaia DR1. Our goal is to put new constraints on the (local) distribution of mass using the Jeans Equations. Here we show the variation of the vertical velocity dispersion as function of height above the mid-plane for both a thin and a thick disk tracer sample and present preliminary results.


2020 ◽  
Vol 494 (1) ◽  
pp. 349-362
Author(s):  
E J Gonzalez ◽  
M Chalela ◽  
M Jauzac ◽  
D Eckert ◽  
M Schaller ◽  
...  

ABSTRACT In the context of the Beyond Ultradeep Frontier Fields And Legacy Observations (BUFFALO) survey, we present a new analysis of the merging galaxy cluster MACS J0416.1−2403 (z = 0.397) and its parallel field using Hubble Frontier Fields (HFF) data. We measure the surface mass density from a weak-lensing analysis and characterize the overall matter distribution in both the cluster and parallel fields. The surface mass distribution derived for the parallel field shows clumpy overdensities connected by filament-like structures elongated in the direction of the cluster core. We also characterize the X-ray emission in the parallel field and compare it with the lensing mass distribution. We identify five mass peaks at the >5σ level over the two fields, four of them being in the cluster one. Three of them are located close to galaxy overdensities and one is also close to an excess in the X-ray emission. Nevertheless, two of them have neither optical nor X-ray counterpart and are located close to the edges of the field of view, thus further studies are needed to confirm them as substructures. Finally, we compare our results with the predicted subhalo distribution of one of the Hydrangea/C-EAGLE simulated cluster. Significant differences are obtained suggesting the simulated cluster is at a more advanced evolutionary stage than MACS J0416.1−2403. Our results anticipate the upcoming BUFFALO observations that will link the two HFF fields, extending further the HST coverage.


2019 ◽  
Vol 489 (1) ◽  
pp. 459-469 ◽  
Author(s):  
Tereasa G Brainerd ◽  
Masaya Yamamoto

ABSTRACT We investigate the locations of satellite galaxies in the z = 0 redshift slice of the hydrodynamical Illustris-1 simulation. As expected from previous work, the satellites are distributed anisotropically in the plane of the sky, with a preference for being located near the major axes of their hosts. Due to misalignment of mass and light within the hosts, the degree of anisotropy is considerably less when satellite locations are measured with respect to the hosts’ stellar surface mass density than when they are measured with respect to the hosts’ dark matter surface mass density. When measured with respect to the hosts’ dark matter surface mass density, the mean satellite location depends strongly on host stellar mass and luminosity, with the satellites of the faintest, least massive hosts showing the greatest anisotropy. When measured with respect to the hosts’ stellar surface mass density, the mean satellite location is essentially independent of host stellar mass and luminosity. In addition, the satellite locations are largely insensitive to the amount of stellar mass used to define the hosts’ stellar surface mass density, as long as at least 50–70 per cent of the hosts’ total stellar mass is used. The satellite locations are dependent upon the stellar masses of the satellites, with the most massive satellites having the most anisotropic distributions.


Sign in / Sign up

Export Citation Format

Share Document