scholarly journals DYNAMICS OF IONIZED GAS AT THE GALACTIC CENTER: VERY LARGE ARRAY OBSERVATIONS OF THE THREE-DIMENSIONAL VELOCITY FIELD AND LOCATION OF THE IONIZED STREAMS IN SAGITTARIUS A WEST

2009 ◽  
Vol 699 (1) ◽  
pp. 186-214 ◽  
Author(s):  
Jun-Hui Zhao ◽  
Mark R. Morris ◽  
W. M. Goss ◽  
Tao An
2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract The Galactic Center IRS 13E cluster is a very intriguing infrared object located at ${\sim } 0.13$ pc from Sagittarius A$^\ast$ (Sgr A$^\ast$) in projection distance. There are arguments both for and against the hypothesis that a dark mass like an intermediate mass black hole (IMBH) exists in the cluster. We recently detected the rotating ionized gas ring around IRS 13E3, which belongs to the cluster, in the H30$\alpha$ recombination line using ALMA. The enclosed mass is derived to be $M_{\mathrm{encl.}}\simeq 2\times 10^{4}\, M_\odot$, which agrees with an IMBH and is barely less than the astrometric upper limit mass of an IMBH around Sgr A$^\ast$. Because the limit mass depends on the true three-dimensional (3D) distance from Sgr A$^\ast$, it is very important to determine it observationally. However, the 3D distance is indefinite because it is hard to determine the line-of-sight (LOS) distance by usual methods. We attempt here to estimate the LOS distance from spectroscopic information. The CH$_3$OH molecule is easily destroyed by the cosmic rays around Sgr A$^{\ast }$. However, we detected a highly excited CH$_3$OH emission line in the ionized gas stream associated with IRS 13E3. This indicates that IRS 13E3 is located at $r\gtrsim 0.4$ pc from Sgr A$^{\ast }$.


2012 ◽  
Vol 8 (S287) ◽  
pp. 449-454
Author(s):  
Loránt O. Sjouwerman ◽  
Ylva M. Pihlström

AbstractWe report on 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) region with the Expanded Very Large Array (EVLA). At least three different maser transitions tracing shocked regions in the cm-wave radio regime can be found in Sgr A. 44 GHz masers correlate with the positions and velocities of 36 GHz CH3OH masers, but the methanol masers correlate less with 1720 MHz OH masers. Our results agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under cooler or denser conditions. We speculate that the geometry of the bright 36 GHz masers in Sgr A East outlines the location of a SNR shock front.


2013 ◽  
Vol 9 (S303) ◽  
pp. 92-93 ◽  
Author(s):  
M. J. Royster ◽  
F. Yusef-Zadeh

AbstractWe report results of a study of the ionized gas towards the Galactic center with radio recombination lines at cm wavelengths. Both the Green Bank Telescope and the Very Large Array were utilized to probe the kinematics of the ionized gas on a global scale for both diffuse and discrete sources within the inner 2.0° × 0.5° (l × b). A diffuse ∼0 km s−1 gas, a thermal flux continuum fraction exceeding 40%, and an asymmetry where ∼70% of the ionized gas is found at positive Galactic longitudes are the preliminary results briefly discussed here.


2013 ◽  
Vol 9 (S303) ◽  
pp. 464-466
Author(s):  
M. Rickert ◽  
F. Yusef-Zadeh ◽  
C. Brogan

AbstractWe analyze a high resolution (114″ × 60″) 74 MHz image of the Galactic center taken with the Very Large Array (VLA). We have identified several absorption and emission features in this region, and we discuss preliminary results of two Galactic center sources: the Sgr D complex (G1.1–0.1) and the Galactic center lobe (GCL).The 74 MHz image displays the thermal and nonthermal components of Sgr D and we argue the Sgr D supernova remnant (SNR) is consistent with an interaction with a nearby molecular cloud and the location of the Sgr D Hii region on the near side of the Galactic center. The image also suggests that the emission from the eastern side of the GCL contains a mixture of both thermal and nonthermal sources, whereas the western side is primarily thermal.


1998 ◽  
Vol 184 ◽  
pp. 321-324
Author(s):  
A.M. Fridman ◽  
V.V. Lyakhovich ◽  
O.V. Khoruzhii ◽  
O.K. Silchenko

The Fourier analysis of the observed velocity field of ionized gas in the inner 1.5 pc of the Galactic Center (obtained by Roberts and Goss, 1993) is made. As follows from the analysis, the observed field of residual velocities is dominated by the second Fourier harmonic. This fact can be treated as a consequence of the presence of an one-armed density wave with the density maximum along the Northern Arm plus the Western Arc structure. The wave nature of this structure is proved on the base of the behaviour of the phase of the second harmonic of line-of-sight velocity field in the whole region. The Fourier analysis shows also the presence of systematic radial velocity. We consider this flow as a quasi-stationary radial drift caused by one-armed nonlinear density wave (‘mini-spiral’).


2016 ◽  
Vol 11 (S322) ◽  
pp. 21-24
Author(s):  
Elena Murchikova

AbstractThe submm Hydrogen recombination line technique can be used as a probe of the Galactic Center. We present the results of our H30α observations of ionized gas from within 0.015 pc around SgrA*. The observations were obtained on ALMA in cycle 3. The line was not detected, but we were able to set a limit on the mass of the cool gas (T~ 104 K) at 2 × 10−3M⊙. This is the unique probe of gas cooler than T ~106 K traced by X-ray emission. The total amount of gas near SgrA* gives us clues to understanding the accretion rate of SgrA*.


2006 ◽  
Vol 2 (S237) ◽  
pp. 400-400
Author(s):  
C. E. Cappa ◽  
R. H. Barbá ◽  
M. Arnal ◽  
N. Duronea ◽  
E. Fernández Lajús ◽  
...  

To investigate the interaction of the massive stars with the gas and dust in the active star forming region NGC 6357, located in the Sagittarius spiral arm at a distance of 1.7-2.6 kpc (Massey et al. 2001), we analyzed the distribution of the neutral and ionized gas, and that of the dust, based on Hα, [OIII] and [SII] images obtained with the Curtis-Schmidt telescope at CTIO, radio continuum observations at 1.465 MHz obtained with the Very Large Array (NRAO) in the DnC configuration (synthesized beam = 38″), Hi data from the Parkes survey (angular resolution = 15′), CO(1-0) observations obtained with the Nanten radiotelescope at Las Campanas Observatory (angular resolution = 2.7′), and IR images in the four MSX bands (angular resolution = 18.3″).


2016 ◽  
Vol 833 (1) ◽  
pp. 11 ◽  
Author(s):  
Anirudh Chiti ◽  
Shami Chatterjee ◽  
Robert Wharton ◽  
James Cordes ◽  
T. Joseph W. Lazio ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document