scholarly journals THE SUPERMASSIVE BLACK HOLE MASS-SPHEROID STELLAR MASS RELATION FOR SÉRSIC AND CORE-SÉRSIC GALAXIES

2013 ◽  
Vol 768 (1) ◽  
pp. 76 ◽  
Author(s):  
Nicholas Scott ◽  
Alister W Graham ◽  
James Schombert
Author(s):  
A Georgakakis ◽  
I Papadakis ◽  
M Paolillo

Abstract An empirical model is presented that links, for the first time, the demographics of AGN to their ensemble X-ray variability properties. Observations on the incidence of AGN in galaxies are combined with (i) models of the Power Spectrum Density (PSD) of the flux variations of AGN and (ii) parameterisations of the black hole mass versus stellar-mass scaling relation, to predict the mean excess variance of active black hole populations in cosmological volumes. We show that the comparison of the model with observational measurements of the ensemble excess variance as a function of X-ray luminosity provides a handle on both the PSD models and the black hole mass versus stellar mass relation. We find strong evidence against a PSD model that is described by a broken power-law and a constant overall normalization. Instead our analysis indicates that the amplitude of the PSD depends on the physical properties of the accretion events, such as the Eddington ratio and/or the black hole mass. We also find that current observational measurements of the ensemble excess variance are consistent with the black hole mass versus stellar mass relation of local spheroids based on dynamically determined black hole masses. We also discuss future prospects of the proposed approach to jointly constrain the PSD of AGN and the black hole mass versus stellar mass relation as a function of redshift.


2019 ◽  
Vol 15 (S359) ◽  
pp. 37-39
Author(s):  
Benjamin L. Davis ◽  
Nandini Sahu ◽  
Alister W. Graham

AbstractOur multi-component photometric decomposition of the largest galaxy sample to date with dynamically-measured black hole masses nearly doubles the number of such galaxies. We have discovered substantially modified scaling relations between the black hole mass and the host galaxy properties, including the spheroid (bulge) stellar mass, the total galaxy stellar mass, and the central stellar velocity dispersion. These refinements partly arose because we were able to explore the scaling relations for various sub-populations of galaxies built by different physical processes, as traced by the presence of a disk, early-type versus late-type galaxies, or a Sérsic versus core-Sérsic spheroid light profile. The new relations appear fundamentally linked with the evolutionary paths followed by galaxies, and they have ramifications for simulations and formation theories involving both quenching and accretion.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Marc S. Seigar

We investigate the dark matter halo density profile of M33. We find that the HI rotation curve of M33 is best described by an NFW dark matter halo density profile model, with a halo concentration of and a virial mass of . We go on to use the NFW concentration of M33, along with the values derived for other galaxies (as found in the literature), to show that correlates with both spiral arm pitch angle and supermassive black hole mass.


2009 ◽  
Vol 400 (4) ◽  
pp. 1803-1807 ◽  
Author(s):  
Y. Watabe ◽  
N. Kawakatu ◽  
M. Imanishi ◽  
T. T. Takeuchi

2017 ◽  
Vol 473 (3) ◽  
pp. 3818-3834 ◽  
Author(s):  
Timothy A. Davis ◽  
Martin Bureau ◽  
Kyoko Onishi ◽  
Freeke van de Voort ◽  
Michele Cappellari ◽  
...  

2020 ◽  
Vol 6 (12) ◽  
pp. eaaz1310 ◽  
Author(s):  
Michael D. Johnson ◽  
Alexandru Lupsasca ◽  
Andrew Strominger ◽  
George N. Wong ◽  
Shahar Hadar ◽  
...  

The Event Horizon Telescope image of the supermassive black hole in the galaxy M87 is dominated by a bright, unresolved ring. General relativity predicts that embedded within this image lies a thin “photon ring,” which is composed of an infinite sequence of self-similar subrings that are indexed by the number of photon orbits around the black hole. The subrings approach the edge of the black hole “shadow,” becoming exponentially narrower but weaker with increasing orbit number, with seemingly negligible contributions from high-order subrings. Here, we show that these subrings produce strong and universal signatures on long interferometric baselines. These signatures offer the possibility of precise measurements of black hole mass and spin, as well as tests of general relativity, using only a sparse interferometric array.


Sign in / Sign up

Export Citation Format

Share Document