Real-space analysis of neutron diffuse scattering from α-AgI

1987 ◽  
Vol 20 (31) ◽  
pp. 5001-5009 ◽  
Author(s):  
Y Tsuchiya
2017 ◽  
Vol 50 (6) ◽  
pp. 1821-1829 ◽  
Author(s):  
Kazimierz Skrobas ◽  
Svitlana Stelmakh ◽  
Stanislaw Gierlotka ◽  
Bogdan F. Palosz

NanoPDF64is a tool designed for structural analysis of nanocrystals based on examination of powder diffraction data with application of real-space analysis. The program allows for fast building of models of nanocrystals consisting of up to several hundred thousand atoms with either cubic or hexagonal close packed structure. The nanocrystal structure may be modified by introducing stacking faults, density modulation waves (i.e.the core–shell model) and thermal atomic vibrations. The program calculates diffraction patterns and, by Fourier transform, the reduced pair distribution functionsG(r) for the models. ExperimentalG(r)s may be quantitatively analyzed by least-squares fitting with an analytical formula.


1994 ◽  
Vol 27 (5) ◽  
pp. 742-754 ◽  
Author(s):  
B. D. Butler ◽  
T. R. Welberry

A full reciprocal-space volume of diffuse scattering data from a single-crystal of the mineral mullite, Al2(Al2 + 2x Si2 − 2x )O10 − x , x = 0.4, was collected. These data were analysed using least-squares techniques by writing an equation for the diffuse scattering that involves only the local order between vacancies on specific oxygen sites in the material. The effect of the large, but predictable, cation shifts on the diffuse intensity is taken account of in the coefficients of the oxygen-vacancy short-range-order intensities. This analysis shows that the vacancies are negatively correlated at the near-neighbour ½ 〈110〉, [110], 〈001〉 and 〈011〉 interatomic vectors and positively correlated along the 〈010〉, 〈101〉, ½ 〈112〉 and ½ 〈310〉 vectors. Subsequent Monte Carlo modelling of the structure based on these local-order parameters demonstrates that the structure of mullite is dominated by effective near-neighbour vacancy–vacancy repulsive interactions. A real-space model of mullite is presented that is approximately consistent with the measured local-order parameters.


2008 ◽  
Vol 41 (22) ◽  
pp. 8789-8799 ◽  
Author(s):  
Kazuki Mita ◽  
Mikihito Takenaka ◽  
Hirokazu Hasegawa ◽  
Takeji Hashimoto

2016 ◽  
Vol 7 (11) ◽  
pp. 6824-6831 ◽  
Author(s):  
Jérémy R. Rouxel ◽  
Vladimir Y. Chernyak ◽  
Shaul Mukamel

A spatially non-local response tensor description of linear chiral signals such as circular dichroism is developed.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Zachary J. Morgan ◽  
Haidong D. Zhou ◽  
Bryan C. Chakoumakos ◽  
Feng Ye

A user-friendly program has been developed to analyze diffuse scattering from single crystals with the reverse Monte Carlo method. The approach allows for refinement of correlated disorder from atomistic supercells with magnetic or structural (occupational and/or displacive) disorder. The program is written in Python and optimized for performance and efficiency. Refinements of two user cases obtained with legacy neutron-scattering data demonstrate the effectiveness of the approach and the developed program. It is shown with bixbyite, a naturally occurring magnetic mineral, that the calculated three-dimensional spin-pair correlations are resolved with finer real-space resolution compared with the pair distribution function calculated directly from the reciprocal-space pattern. With the triangular lattice Ba3Co2O6(CO3)0.7, refinements of occupational and displacive disorder are combined to extract the one-dimensional intra-chain correlations of carbonate molecules that move toward neighboring vacant sites to accommodate strain induced by electrostatic interactions. The program is packaged with a graphical user interface and extensible to serve the needs of single-crystal diffractometer instruments that collect diffuse-scattering data.


Author(s):  
Andreas Michels

Spin-misalignment correlations in real space are the subject of this chapter. The correlation function and correlation length of the spin-misalignment SANS cross section are introduced, their properties are discussed within the context of micromagnetic theory, and selected experimental data on Nd-Fe-B-based permanent magnets and nanocrystalline elemental soft (Cobalt and Nickel) and hard (Gadolinium and Terbium) magnets are reviewed.


Sign in / Sign up

Export Citation Format

Share Document