Influence of process parameters on the characteristics of electrohydrodynamic-printed UV-curing conductive lines on the fabric

Author(s):  
Wenjing Guo ◽  
Hu Jiyong ◽  
Xiong Yan

Abstract As a similar technology to the near-field static electrospinning, the emerging electrohydrodynamic (EHD) printing technology with digital printing process and compatibility of viscous particle-blended inks is one of the simplest methods of fabricating multifunctional electronic textiles.With increasing demands for textile-based conductive lines with controllable width and excellent electrical performance, it’s of great importance to know the influence of key process parameters on the morphology and electrical properties of EHD-printed UV-curing conductive lines on the fabric. This work will systematically explore the effect of the EHD printing process parameters (i.e. applied voltage, direct-writing height, flow rate and moving velocity of the substrate) on the morphology and electrical performance of the EHD-printed textile-based conductive lines, especially focus on the diffusion and penetration of inks on the rough and porous fabric. The UV-curing nano-silver ink with low temperature and fast curing features was selected, and the line width and electrical resistance of printed lines under different process parameters were observed and measured. The results showed that, unlike previous results about EHD printing on smooth and impermeable substrates, the ink diffusion related to fabric textures had a greater effect on the fabric-based conductive line width than the applied voltage and direct-writing height in the case of a stable jet. Meanwhile, the relationship between the line width and the flow rate met the equation of = 407.28 ∗ 1⁄2 , and the minimum volume on fabric per millimeter was 0.67μL to form continuous line with low electrical resistance. Additionally, the higher substrate moving velocity resulted in a smaller line width, while it deteriorated the thickness uniformity and electrical property of printed lines. Generally, due to the effect of surface structure of the fabric on the spreading and penetrating behavior of inks, the flow rate and the substrate moving velocity are two significant parameters ensuring the electrical property of printed lines. It is believed that these findings will provide some guides for applying electrohydrodynamic printing technology into flexible electronics on the woven fabric.

Micromachines ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 287 ◽  
Author(s):  
Jianzhou Chen ◽  
Ting Wu ◽  
Libing Zhang ◽  
Peng Li ◽  
Xiaowei Feng ◽  
...  

A micro pattern is a key component of various functional devices. In the present study, using the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) mixed material as the direct-writing solution and photographic paper as the flexible insulating substrate, the organic micro patterns of various shapes, such as the curve of the second-order self-similar structure, the helical curve, and the wave curve, were fabricated on the flexible insulating substrate by using the near-field electrohydrodynamic direct-writing method. The effects of process parameters, such as the applied voltage, direct-writing height, flow rate of the injection system, and moving velocity of the substrate, on the width and the conductivity of the organic micro patterns were studied in the near-field electrohydrodynamic direct-writing process. The results show that the width of an organic micro pattern increases with the increase of the applied voltage of the high-voltage power supplier and the flow rate of the injection system under the condition where the three other process parameters remained constant, respectively, while the width of an organic micro pattern decreases with the increase of the direct-writing height and the moving velocity of the flexible substrate, respectively. The fabricated organic microcircuit patterns of the natural drying in air at room temperature were tested by a thin film thermoelectric tester at a detection temperature. The results show that the conductivity of a fabricated organic micro pattern decreases with the increase of the electric field intensity, while the effect of moving velocity and the flow rate on the conductivity is small under the condition where the three other process parameters remained constant.


2018 ◽  
Vol 33 (5) ◽  
pp. 619-629 ◽  
Author(s):  
Maryam Soleimani ◽  
Shohreh Mashayekhan ◽  
Hossein Baniasadi ◽  
Ahmad Ramazani ◽  
Mohamadhasan Ansarizadeh

Peripheral nervous system in contrary to central one has the potential for regeneration, but its regrowth requires proper environmental conditions and supporting growth factors. The aim of this study is to design and fabricate a conductive polyaniline/graphene nanoparticles incorporated gelatin nanofibrous scaffolds suitable for peripheral nervous system regeneration. The scaffolds were fabricated with electrospinning and the fabrication process was designed with Design-Expert software via response surface methodology. The effect of process parameters including applied voltage (kV), syringe pump flow rate (cm3/h), and PAG concentration (wt%), on the scaffold conductivity, nanofibers diameter, and cell viability were investigated. The obtained results showed that the scaffold conductivity and cell viability are affected by polyaniline/graphene concentration while nanofiber diameter is more affected by the applied voltage and syringe pump flow rate. Optimum scaffold with maximum conductivity (0.031 ± 0.0013 S/cm) and cell compatibility and suitable diameter were electrospun according to the software introduced values for the process parameters (voltage of 13 kV, flow rate of 0.1 cm3/h, and PAG wt.% of 1.3) and its morphology, cell compatibility, and biodegradability were further investigated, which showed its potential for applying in peripheral nervous system injury regeneration.


Author(s):  
Md. Ahasan Habib ◽  
Bashir Khoda

Abstract Three dimensional (3D) bio-printing or direct writing technique has become a popular tool in tissue engineering applications that uses a computer-controlled process to deposit bio-ink for reproducing 3D tissue. Among multiple bio-printing modal, extrusion-based printing is capable of depositing diverse range of hydrogel materials and their compositions as bio-ink. Both acellular bio-ink and cell-laden bio-ink can be extruded by controlling the writing parameters to achieve high (>80%) cell survivability and density along with spatial precision and accuracy in 3D space. To increase cell viability and improve mechanical properties, nano-materials are often added in the bio-ink. However, the interplay between 3D bio-printing process parameters, solid fiber content and deposited fiber orientation has not been investigated yet. A novel cellulose based nano-fiber filled bio-ink (i.e. TEMPO nano fibrillated cellulose fiber) is developed and used in this research. The distribution of fiber is explored with respect to the 3D bio-printing process parameters such as nozzle diameter, applied pressure, fiber content and, alginate content. We found, fiber alignments has a very strong correlation with the deposition direction and about 70% fiber falls within 20 degree of the deposition direction.


2018 ◽  
Vol 69 (04) ◽  
pp. 263-269
Author(s):  
BANCIU CRISTINA ◽  
BĂRA ADELA ◽  
CHIȚANU ELENA ◽  
MARINESCU VIRGIL ◽  
SBÂRCEA GABRIELA ◽  
...  

Electrospinning is one of the methods for obtaining nano/microfibers, using polymeric solutions. These nanofibrous membranes are highly porous with interconnected pores, having high specific surface area and small pore size, making them a suitable candidate for filtration applications. The properties of electrospun fibers are influenced by polymer solution, solvent, solution concentration, viscosity, electrical conductivity, electrical voltage, spinneret to collector distance etc. Expanded polystyrene is a polymeric product that is usually used for insulation and packaging. Recycling expanded polystyrene into nanofibers with applications in filtration could be useful from an economic point of view. The purpose of this study was to investigate the influence of expanded polystyrene polymer solution characteristics (concentration, viscosity) and the process parameters (applied voltage, distance between the tip and the collector plate, flow rate of the polymer solution) on the morphology and the properties of the obtained electrospun fibers. Therefore, three EPS solutions with 10, 15 and 20% wt. concentration were prepared and were electrospun under processing conditions with an applied voltage of 12, 15 and 18 kV, a spinneret-to-collector distance of 20 cm, a flow rate of solution of 1.5 and 2 mL/hour, a spinneret diameter of 0.8 mm and stationary copper substrate. The morphology of the electrospun fibers was observed by scanning electron microscopy. The mechanical properties were evaluated by tensile strength and elongation tests.


Author(s):  
Pradeep Lall ◽  
Kartik Goyal ◽  
Scott Miller

Abstract The transition of additive printed electronics into high-volume production requires process consistency to allow quality control of the manufactured product. Process recipes are needed for multilayer substrates with z-axis interconnects in order to enable complex systems. In this paper, process recipes have been developed through fundamental studies of the interactions between the process parameters and the mechanical-electrical performance achieved for multilayer substrates. The study reported in this paper focuses on printed vias also known as donut vias. Aerosol jet process parameters studied include carrier mass flow rate, sheath mass flow rate, exhaust mass flow rate, print speed, number of passes, sintering time and temperature, uv-intensity for uv-cure, and standoff height. The electrical performance has been quantified through the measurements of resistance. The mechanical performance has been quantified through measurement of shear load-to-failure. The effect of sequential build-up on the mechanical-electrical properties vs process parameters have been quantified for up tp 8-layers designs. The performance of 5-layer and 8-layer additively printed substrate designs and effect of multiple vias has been compared to assess process consistency.


2021 ◽  
Vol 231 ◽  
pp. 03003
Author(s):  
JC Jiang ◽  
Xinghua Xu ◽  
Wanzhi Rui ◽  
Zhengrong Jia ◽  
Zuowei Ping

Additive manufacturing is becoming increasingly popular because of its unique advantages, especially fused deposition modelling (FDM) which has been widely used due to its simplicity and comparatively low price. However, in current FDM processes, it is difficult to fabricate parts with highly accurate dimensions. One of the reasons is due to the slicing process of 3D models. Current slicing software divides the parts into layers and then lines (paths) based on a fixed value. However, in a real printing process, the printed line width will change when the process parameters are set in different values. The various printed widths may result in inaccuracy of printed dimensions of parts if using a fixed value for slicing. In this paper, a mathematical model is proposed to predict the printed line width in different layer heights. Based on this model, a method is proposed for calculating the optimal width value for slicing 3D parts. In the future, the proposed mathematical model can be integrated into slicing software to slice 3D models for precision additive manufacturing.


2012 ◽  
Vol 535-537 ◽  
pp. 2522-2525 ◽  
Author(s):  
Amit Jadhav ◽  
Li Jing Wang ◽  
Rajiv Padhye

In an electrospraying process, the polymer solution interacts with the electric field. Charged polymeric solutions causing polymer liquids to move, break into drops or spray into fine droplets. Electrospraying has the ability to generate very small & uniform droplets of polymeric solution. It is envisaged that electrospraying is a promising technology to coat a polymer on surface at submicron range. The polymer aggregation is important while coating. The process parameters including applied voltage, nozzle-collector distance, solution flow rate, and solution concentration play an important role in polymer droplets aggregation on surface. This research paper investigates the effect of applied voltage on aggregation of polymer droplets.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2106
Author(s):  
Chris J. Barnett ◽  
James D. McGettrick ◽  
Varun Shenoy Gangoli ◽  
Ewa Kazimierska ◽  
Alvin Orbaek White ◽  
...  

Carbon nanotubes (CNTs) can be spun into fibers as potential lightweight replacements for copper in electrical current transmission since lightweight CNT fibers weigh <1/6th that of an equivalently dimensioned copper wire. Experimentally, it has been shown that the electrical resistance of CNT fibers increases with longitudinal strain; however, although fibers may be under radial strain when they are compressed during crimping at contacts for use in electrical current transport, there has been no study of this relationship. Herein, we apply radial stress at the contact to a CNT fiber on both the nano- and macro-scale and measure the changes in fiber and contact resistance. We observed an increase in resistance with increasing pressure on the nanoscale as well as initially on the macro scale, which we attribute to the decreasing of axial CNT…CNT contacts. On the macro scale, the resistance then decreases with increased pressure, which we attribute to improved radial contact due to the closing of voids within the fiber bundle. X-ray photoelectron spectroscopy (XPS) and UV photoelectron spectroscopy (UPS) show that applied pressure on the fiber can damage the π–π bonding, which could also contribute to the increased resistance. As such, care must be taken when applying radial strain on CNT fibers in applications, including crimping for electrical contacts, lest they operate in an unfavorable regime with worse electrical performance.


2021 ◽  
Author(s):  
Zahoor Ahmed Shariff ◽  
Lokesh M. ◽  
K. Mayandi ◽  
A. K. Saravanan ◽  
P. Sethu Ramalingam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document