An Intensity Demodulated Refractive Index Sensor Based on A Hollow-Core Anti-Resonant Fiber

Author(s):  
Shidi Liu ◽  
Tianyu Yang ◽  
Liang Zhang ◽  
Ming Tian ◽  
Yuming Dong

Abstract A robust and simple mid-infrared hollow-core anti-resonant fiber (ARF) based refractive index (RI) sensor with an intensity demodulation method is presented and analyzed for monitoring liquid analytes. The ARF allows liquid analytes to flow through its hollow area for detection. To obtain ideal sensing performance, an epsilon negative (ENG) material is introduced into the selected anti-resonant tube. With the high absorption of the ENG material, only one fundamental mode is available for detection and is sensitive to the RI variation of analytes. Moreover, the effects of structural parameters on the sensing performances are discussed and analyzed to further understand the mechanism and optimization. The final result shows that the ARF sensor can exhibit a high sensitivity of -372.58 dB/RIU at a fixed wavelength within a broad RI range from 1.33 to 1.45, which covers most liquid analytes. It is a promising candidate for chemical and environmental analysis. Additionally, it has the potential for deep research to feed diverse applications.

Photonics ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 111
Author(s):  
Haijin Chen ◽  
Xuehao Hu ◽  
Meifan He ◽  
Qianqing Yu ◽  
Zhenggang Lian ◽  
...  

We demonstrate a dual-core fiber-based Mach–Zehnder interferometer that could be used for precise detection of variations in refractive indices of gaseous samples. The fiber used here have a solid germanium-doped silica core and an air core that allows gases to flow through. Coherent laser beams are coupled to the two cores, respectively, and thus excite guiding modes thereby. Interferogram would be produced as the light transmitted from the dual cores interferes. Variations in refractive index of the hollow core lead to variations in phase difference between the modes in the two cores, thus shifting the interference fringes. The fringe shifts can be then interrogated by a photodiode together with a narrow slit in front. The resolution of the sensor was found to be ~1 × 10−8 RIU, that is comparable to the highest resolution obtained by other fiber sensors reported in previous literatures. Other advantages of our sensor include very low cost, high sensitivity, straightforward sensing mechanism, and ease of fabrication.


2021 ◽  
pp. 104129
Author(s):  
Yuhao Zhang ◽  
Zhongzhu Liang ◽  
Dejia Meng ◽  
Zheng Qin ◽  
Yandong Fan ◽  
...  

Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 420
Author(s):  
Ang Deng ◽  
Wonkeun Chang

We numerically investigate the effect of scaling two key structural parameters in antiresonant hollow-core fibers—dielectric wall thickness of the cladding elements and core size—in view of low-loss mid-infrared beam delivery. We demonstrate that there exists an additional resonance-like loss peak in the long-wavelength limit of the first transmission band in antiresonant hollow-core fibers. We also find that the confinement loss in tubular-type hollow-core fibers depends strongly on the core size, where the degree of the dependence varies with the cladding tube size. The loss scales with the core diameter to the power of approximately −5.4 for commonly used tubular-type hollow-core fiber designs.


2019 ◽  
Vol 50 ◽  
pp. 13-18 ◽  
Author(s):  
Zengshan Xing ◽  
Yanzhen Wang ◽  
Li Tang ◽  
Jianhui Yu ◽  
Heyuan Guan ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1028
Author(s):  
Na Zhao ◽  
Qijing Lin ◽  
Kun Yao ◽  
Fuzheng Zhang ◽  
Bian Tian ◽  
...  

The optical fiber temperature and refractive index sensor combined with the hollow needle structure for medical treatment can promote the standardization of traditional acupuncture techniques and improve the accuracy of body fluid analysis. A double-parameter sensor based on fiber Bragg grating (FBG) is developed in this paper. The sensor materials are selected through X-ray diffraction (XRD) analysis, and the sensor sensing principle is theoretically analyzed and simulated. Through femtosecond laser writing pure silica fiber, a high temperature resistant wavelength type FBG temperature sensor is obtained, and the FBG is corroded by hydrofluoric acid (HF) to realize a high-sensitivity intensity-type refractive index sensor. Because the light has dual characteristics of energy and wavelength, the sensor can realize simultaneous dual-parameter sensing. The light from the lead-in optical fiber is transmitted to the sensor and affected by temperature and refractive-index; then, the reflection peak is reflected back to the lead-out fiber by the FBG. The high temperature response and the refractive index response of the sensor were measured in the laboratory, and the high temperature characteristics of the sensor were verified in the accredited institute. It is demonstrated that the proposed sensor can achieve temperature sensing up to 1150 °C with the sensitivity of 0.0134 nm/°C, and refractive sensing over a refractive range of 1.333 to 1.4027 with the sensitivity of −49.044 dBm/RIU. The sensor features the advantages of two-parameter measurement, compact structure, and wide temperature range, and it exhibits great potential in acupuncture treatment.


2021 ◽  
Author(s):  
Zhen Tian ◽  
Lina Suo ◽  
Nan-Kuang Chen ◽  
Yicun Yao ◽  
Liqiang Zhang ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2097
Author(s):  
Yuan-Fong Chou Chau ◽  
Chung-Ting Chou Chao ◽  
Siti Zubaidah Binti Haji Jumat ◽  
Muhammad Raziq Rahimi Kooh ◽  
Roshan Thotagamuge ◽  
...  

This work proposed a multiple mode Fano resonance-based refractive index sensor with high sensitivity that is a rarely investigated structure. The designed device consists of a metal–insulator–metal (MIM) waveguide with two rectangular stubs side-coupled with an elliptical resonator embedded with an air path in the resonator and several metal defects set in the bus waveguide. We systematically studied three types of sensor structures employing the finite element method. Results show that the surface plasmon mode’s splitting is affected by the geometry of the sensor. We found that the transmittance dips and peaks can dramatically change by adding the dual air stubs, and the light–matter interaction can effectively enhance by embedding an air path in the resonator and the metal defects in the bus waveguide. The double air stubs and an air path contribute to the cavity plasmon resonance, and the metal defects facilitate the gap plasmon resonance in the proposed plasmonic sensor, resulting in remarkable characteristics compared with those of plasmonic sensors. The high sensitivity of 2600 nm/RIU and 1200 nm/RIU can simultaneously achieve in mode 1 and mode 2 of the proposed type 3 structure, which considerably raises the sensitivity by 216.67% for mode 1 and 133.33% for mode 2 compared to its regular counterpart, i.e., type 2 structure. The designed sensing structure can detect the material’s refractive index in a wide range of gas, liquids, and biomaterials (e.g., hemoglobin concentration).


Sign in / Sign up

Export Citation Format

Share Document