A Review of Properties, Synthesis and Applications on Lanthanum Copper Oxychalcogenides

Author(s):  
Menglu Li ◽  
Ning Wang ◽  
Sa Zhang ◽  
Jutao Hu ◽  
Haiyan Xiao ◽  
...  

Abstract The study of layered materials has been a significant and fascinating area due to their unique physical and chemical properties. Among various layered materials, lanthanum copper oxychalcogenides (LaCuOX (X=S, Se, Te)) have drawn a lot of attention of researchers. The study of LaCuOX was initially focused on the optoelectronic performance due to its excellent optical and electronic properties. Recently, it was found that the layered LaCuOX material also exhibits good thermoelectric properties, providing an opportunity to achieve high energy conversion efficiency through the thermoelectric effects. In this report, an overview of recent advances in LaCuOX research is provided, including crystal and electronic structure, synthetic methods, physical properties, practical applications as well as some strategies to optimize their transport properties. Theoretical and experimental results on LaCuOX crystals or thin films are both discussed in this report. Finally, the challenges and outlook for LaCuOX are evaluated based on current progress.

2012 ◽  
Vol 7 (3) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Zhanjie Xu ◽  
Peng Du ◽  
Peter Meiser ◽  
Claus Jacob

Proanthocyanidins represent a unique class of oligomeric and polymeric secondary metabolites found ubiquitously and in considerable amounts in plants and some algae. These substances exhibit a range of rather surprising physical and chemical properties which, once applied to living organisms, are translated into a multitude of biological activities. The latter include antioxidant properties, cancer chemoprevention, anti-inflammatory and anti-diabetic effects as well as some exceptional, yet highly interesting activities, such as anti-nutritional and antimicrobial activity. Despite the wide range of activities and possible medical/agricultural applications of proanthocyanidins, many questions still remain, including issues related to bioavailability, metabolism and the precise biochemical, extra- and intracellular targets and mode(s) of action of these highly potent materials. Among the various physical and chemical interactions of such substances, strong binding to proteins appears to form the basis of many of their biological activities. Once easy-to-use synthetic methods to produce appropriate quantities of pure proanthocyanidins are available, it will be possible to identify the prime biological targets of these oligomers, study oligomer-protein interactions in more detail and develop possible practical applications in medicine and agriculture.


2020 ◽  
Vol 8 (46) ◽  
pp. 24284-24306
Author(s):  
Xuefeng Ren ◽  
Yiran Wang ◽  
Anmin Liu ◽  
Zhihong Zhang ◽  
Qianyuan Lv ◽  
...  

Fuel cell is an electrochemical device, which can directly convert the chemical energy of fuel into electric energy, without heat process, not limited by Carnot cycle, high energy conversion efficiency, no noise and pollution.


Author(s):  
Zefang Yang ◽  
Lin Zhu ◽  
Chao-Nan Lv ◽  
Rui Zhang ◽  
Hai-Yan Wang ◽  
...  

Molybdenum disulfide, a typically layered transition metal chalcogenide, is considered one of the promising electrode candidates for next-generation high energy density batteries owing to its tunable physical and chemical properties,...


2021 ◽  
Vol 410 ◽  
pp. 469-474
Author(s):  
Ivan S. Safronov ◽  
Alexander I. Ushakov

One of the most important purposes of materials science is the ability to govern the physical properties of materials characterized by different structures. The strength properties of nanostructured metal alloys do not always meet the exploitation requirements. The set of properties of such materials is stable within narrow limits: temperature, mechanical, and corrosion conditions. Traditional processing modes are ineffective for such materials. Attempts to use them often lead to the loss of unique physical and chemical properties. The most effective methods of processing such materials are associated with the use of laser radiation. The laser pulse has a number of features, including a complex effect on the surface layers of the material. Spot and short irradiation with high-energy rays can preserve the unique physical properties of samples as a whole and improve strength indicators without destroying the structure of the material as a whole.


Nano Letters ◽  
2010 ◽  
Vol 10 (2) ◽  
pp. 726-731 ◽  
Author(s):  
Chieh Chang ◽  
Van H. Tran ◽  
Junbo Wang ◽  
Yiin-Kuen Fuh ◽  
Liwei Lin

2015 ◽  
Vol 781 ◽  
pp. 406-409
Author(s):  
Dome Sulong ◽  
Chuttchaval Jeraputra

This paper presents the design and control of a grid-connected flyback inverter with a DC active filter for photovoltaic (PV) cells. The proposed topology consists of a flyback DC-AC inverter and a DC active filter that can operate independently. The flyback inverter, controlled in digital peak current mode, regulates the full-wave rectified sinusoidal current later, which is alternately inverted and injected into the grid. The DC active filter regulates the smooth current/power drawn from a PV module by using cascaded proportional-integral (PI) controllers. Analysis, design and control of the proposed topology are presented. A 100W/220V/50Hz prototype is developed and tested. The experimental results show that the proposed flyback inverter with a DC active filter is capable of regulating a sinusoidal current fed into the grid, actively filtering the DC current/power and achieving reasonably high energy conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document