Cluster decay half-lives in trans-tin and transition metal region using RMF theory

Author(s):  
Ajeet Singh ◽  
A Shukla ◽  
M K Gaidarov

Abstract In the present work, we have studied the alpha-like clusters (8Be, 12C, 16O, 20Ne, and 24Mg) decay half-lives in the trans-tin region for (106-116Xe, 108-122Ba, 114-124Ce, and 118-128Nd) and in transition metal region for (156-166Hf, 158-172W, 160-174Os, 166-180Pt, and 170-182Hg) nuclei. These half-lives have been calculated using the shape parametrization model of cluster decay in conjunction with the relativistic mean-field (RMF) model with the NL3* parameter set. Thus calculated cluster decay half-lives are also compared with the half-lives computed using the latest empirical relations, namely Universal decay law (UDL) and the Scaling Law given by Horoi et al.. From the calculated results, it has been observed that in the trans-tin region, the minimum cluster decay half-lives are found at nearly doubly magic or doubly magic daughter 100Sn (Nd = 50, Nd is the neutron number of the daughter nuclei) shell effect at Nd = 50 and in transition metal region, half-lives are minimum at Nd = 82, which is a magic number. Further, the Geiger-Nuttal plots of half-lives showing Q dependence for different alpha-like clusters from various CR emitters that have been plotted are found to vary linearly.

Author(s):  
R. Sharma ◽  
A. Jain ◽  
M. Kaushik ◽  
S. K. Jain ◽  
G. Saxena

In this paper, various ground state properties are explored for full isotonic(isotopic) chain of neutron number N [Formula: see text]proton number [Formula: see text] using different families of Relativistic Mean-Field theory. Several properties, such as nucleon separation energies, pairing energies, deformation, radii and nucleon density distributions, are evaluated and compared with the experimental data as well as those from other microscopic and macroscopic models. [Formula: see text] isotonic chain presents ample of support for the neutron magicity and articulates double magicity in recently discovered [Formula: see text]Ca and [Formula: see text]Ni. Our results are in close conformity with the recently measured value of charge radius of [Formula: see text]Ni [S. Kaufmann et al., Phys. Rev. Lett. 124 (2020) 132502] which supports the [Formula: see text] magicity. Contrarily, Zr isotopes ([Formula: see text]) display variety of shapes leading to the phenomenon of shape transitions and shape co-existence. The role of 3s[Formula: see text] state, which leads to central depletion if unoccupied, is also investigated. [Formula: see text]S and [Formula: see text]Zr are found to be doubly bubble nuclei.


2021 ◽  
Author(s):  
Jeet Amrit Pattnaik ◽  
M. Bhuyan ◽  
R N Panda ◽  
S K Patra

Abstract The ground-state properties such as binding energy, root-mean-square radius, pairing energy, nucleons density distribution, symmetry energy, and single-particle energies are calculated for the isotopic chain of Ca, Sn, Pb, and Z = 120 nuclei. The recently developed G3 and IOPB-I forces along with the DD-ME1 and DD-ME2 sets are used in the analysis employing the relativistic mean-field approximation. To locate the magic numbers in the superheavy region and to explain the observed kink at neutron number N=82 for Sn isotopes, a three-point formula is used to see the shift of the observable and other nuclear properties in the isotopic chain. Unlike the electronic configuration, due to strong spin-orbit interaction, the higher spin orbitals are occupied earlier than the lower spin, causing the possible kink at the neutron magic numbers. We find peaks at the known neutron magic number with the confirmation of sub-shell, shell closure respectively at N=40, 184 for Ca and 304120.


Foundations ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 85-104
Author(s):  
Tolulope Majekodunmi Joshua ◽  
Nishu Jain ◽  
Raj Kumar ◽  
Khairul Anwar ◽  
Nooraihan Abdullah ◽  
...  

A new α-emitting has been observed experimentally for neutron deficient 214U which opens the window to theoretically investigate the ground state properties of 214,216,218U isotopes and to examine α-particle clustering around the shell closure. The decay half-lives are calculated within the preformed cluster-decay model (PCM). To obtain the α-daughter interaction potential, the RMF densities are folded with the newly developed R3Y and the well-known M3Y NN potentials for comparison. The alpha preformation probability (Pα) is calculated from the analytic formula of Deng and Zhang. The WKB approximation is employed for the calculation of the transmission probability. The individual binding energies (BE) for the participating nuclei are estimated from the relativistic mean-field (RMF) formalism and those from the finite range droplet model (FRDM) as well as WS3 mass tables. In addition to Z=84, the so-called abnormal enhancement region, i.e., 84≤Z≤90 and N<126, is normalised by an appropriately fitted neck-parameter ΔR. On the other hand, the discrepancy sets in due to the shell effect at (and around) the proton magic number Z=82 and 84, and thus a higher scaling factor ranging from 10−5–10−8 is required. Additionally, in contrast with the experimental binding energy data, large deviations of about 5–10 MeV are evident in the RMF formalism despite the use of different parameter sets. An accurate prediction of α-decay half-lives requires a Q-value that is in proximity with the experimental data. In addition, other microscopic frameworks besides RMF could be more reliable for the mass region under study. α-particle clustering is largely influenced by the shell effect.


2013 ◽  
Vol 28 (16) ◽  
pp. 1350068 ◽  
Author(s):  
TUNCAY BAYRAM ◽  
A. HAKAN YILMAZ

The ground state energies, sizes and deformations of 1897 even–even nuclei with 10≤Z ≤110 have been carried out by using the Relativistic Mean Field (RMF) model. In the present calculations, the nonlinear RMF force NL3* recent refitted version of the NL3 force has been used. The BCS (Bardeen–Cooper–Schrieffer) formalism with constant gap approximation has been taken into account for pairing correlations. The predictions of RMF model for the ground state properties of some nuclei have been discussed in detail.


2008 ◽  
Vol 17 (09) ◽  
pp. 1765-1773 ◽  
Author(s):  
JIGUANG CAO ◽  
ZHONGYU MA ◽  
NGUYEN VAN GIAI

The microscopic properties and superfluidity of the inner crust in neutron stars are investigated in the framework of the relativistic mean field(RMF) model and BCS theory. The Wigner-Seitz(W-S) cell of inner crust is composed of neutron-rich nuclei immersed in a sea of dilute, homogeneous neutron gas. The pairing properties of nucleons in the W-S cells are treated in BCS theory with Gogny interaction. In this work, we emphasize on the choice of the boundary conditions in the RMF approach and superfluidity of the inner crust. Three kinds of boundary conditions are suggested. The properties of the W-S cells with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov(HFB) models are compared.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950041 ◽  
Author(s):  
R. R. Swain ◽  
B. B. Sahu ◽  
P. K. Moharana ◽  
S. K. Patra

We have examined the binding energy, root-mean-square radii and two neutrons separation energies for the recently accepted super-heavy element [Formula: see text] established as Og using the axially deformed relativistic mean field (RMF) model with NL3 force parameter set. The calculation is extended to various isotopes of [Formula: see text] element, starting from [Formula: see text] till [Formula: see text]. The most stable isotope is found to be at [Formula: see text]. Also, the [Formula: see text]-decay energy [Formula: see text] and hence the half-lives [Formula: see text] is carried out by taking three different empirical formulae for the [Formula: see text]-decay chains of [Formula: see text] supporting the possible shell closure at daughter nuclei [Formula: see text] and/ or 184 and at parent nucleus of [Formula: see text] with [Formula: see text].


2008 ◽  
Vol 17 (09) ◽  
pp. 1720-1728
Author(s):  
L. DANG ◽  
P. YUE ◽  
L. LI ◽  
P. Z. NING

The hyperon density dependence (YDD) of hyperon-nucleon interactions are studied in the relativistic mean field (RMF) model and their influences on the properties of neutron stars are studied. The extended RMF considered the interior quarks coordinates of hyperon and bring a hyperon density dependent factor, f(ρY), to the meson-hyperon coupling vertexes. The hyperon density dependence of YN interaction affect the properties of neutron stars only after the corresponding hyperon appears. Then, the influences of the density dependence factors are almost ignored at low densities, which are clear at high densities. The compositions and properties of neutron stars are studied with and without the YDD of YN interactions for the different Σ--nucleus effective potentials, (30, 0, -30)MeV. The calculated results indicated that the YDD of YN interaction soften the equation of state of neutron stars at high densities.


2013 ◽  
Vol 22 (05) ◽  
pp. 1350025 ◽  
Author(s):  
G. SAXENA ◽  
D. SINGH

Encouraged by the success of relativistic mean-field plus BCS (RMF + BCS) approach for the description of the ground state properties of the chains of isotopes of proton magic nuclei with proton number Z = 8, 20, 28, 50 and 82 as well as those of proton sub-magic nuclei with Z = 40, we have further employed it, in an analogous manner, for a detailed calculations of the ground state properties of the neutron magic isotones with neutron number N = 8, 20, 28, 50, 82 and 126 as well as those of neutron sub-magic isotones with N = 40 using the TMA force parametrizations in order to explore low lying resonance and other exotic phenomenon near drip-lines. The results of these calculations for wave function, single particle pairing gaps etc. are presented here to demonstrate the general validity of our RMF + BCS approach. It is found that, in some of the proton-rich nuclei in the vicinity of the proton drip-line, the main contribution to the pairing correlations is provided by the low-lying resonant states, in addition to the contributions coming from the states close to the Fermi surface, which results extended proton drip-line for isotonic chain.


2009 ◽  
Vol 24 (11n13) ◽  
pp. 1067-1070
Author(s):  
S. WIBOWO ◽  
A. SULAKSONO

Effects of the ω meson self coupling (OMSC) on the thermal properties of asymmetric nuclear matter (ANM) are studied within the framework of relativistic mean field (RMF) model that includes contributions of all possible mixed interactions among meson fields involved up to quartic order. In particular, we study the mechanical and chemical instabilities (spinodal), as well as the liquid-gas phase transition (binodal) at finite temperature. It is found that the onset of spinodal instabilities and the binodal curve are only marginally affected by variation of the OMSC parameter, whereas the binodal curve shows a strong correlation to the symmetry energy. Comparison with other ERMF parameter sets is also performed.


Sign in / Sign up

Export Citation Format

Share Document