Vacancies and substitutional defects in multicomponent diboride Ti0.25Zr0.25Hf0.25Ta0.25B2: First-principle study

Author(s):  
Martin Matas ◽  
Alireza Farhadizadeh ◽  
Jiri Houska

Abstract We study the hard and electrically conductive multicomponent diboride Ti0.25Zr0.25Hf0.25Ta0.25B2 with high thermal stability by ab initio calculations. We focus on the effect of defects (either vacancies or C atoms, both relevant for numerous experiments including our own) on material characteristics. Different types, concentrations and distributions of defects were investigated, and the configurations leading to the lowest formation energies were identified. We show that the replacement of B by C is more unfavorable than the formation of B vacancies. We show that vacancies prefer to coalesce into a larger planar void, minimizing the number of broken B B bonds and the volume per atom, while carbon substitutions at boron sites do not prefer coalescence and tend to minimize the number of C-C bonds. We show the effect of vacancies on mechanical and electronic properties, and use the results to explain experimental data.

2002 ◽  
Vol 57 (6-7) ◽  
pp. 333-336
Author(s):  
Evgenii A. Romanenko ◽  
Alexander M. Nesterenko

IThe 35Cl nuclear quadrupole resonances (77 K) and ab initio calculations of trichloromethyldichlorophosphine () show that it exists in the chess conformation form. The barrier to internal rotation about the P-C bond in I at the RHF/6-31++ G(d,p) level equals to 38.1 kJ mol-1. In chloromethyldichlorophosphine (II) the extension of the basis set up to the RHF/6-311++G(df, pd) level does not improve the description of the most preferable gauche-conformation; only if electron correlation (at the MP2 level) is taken into account the results are in a good agreement with experimental data.


2013 ◽  
Vol 738-739 ◽  
pp. 473-477 ◽  
Author(s):  
Mikhail A. Zagrebin ◽  
Vladimir V. Sokolovskiy ◽  
Vasiliy D. Buchelnikov

In this work the magnetic properties (exchange parameters, magnetic moment of non-stoichiometric Ni–Mn–Ga Heusler alloys with structural disorder by the help of ab initio calculations have been performed. Theoretical composition dependences of the total magnetic moment are in qualitative agreement in qualitative agreement with experimental data. Calculations of exchange parameters show that interactions between the Mn atoms in regular positions and Mn atoms in Ni and Ga positions are antiferromagnetic.


2019 ◽  
Vol 778 ◽  
pp. 514-521
Author(s):  
S.A. Dotsenko ◽  
Yu.V. Luniakov ◽  
A.S. Gouralnik ◽  
A.K. Gutakovskii ◽  
N.G. Galkin

Author(s):  
D. A. Broido ◽  
Natalio Mingo ◽  
Derek Stewart

Current theories of phonon thermal transport in nanomaterials are often based on highly parametrized approximations or on purely classical molecular dynamics calculations. We present a rigorous theoretical approach to accurately describe phonon thermal transport in bulk and nanostructured materials. This technique is based on Boltzmann and non-equilibrium Green’s function calculations of thermal transport, and employs ab-initio calculations of harmonic and anharmonic interatomic force constants using density functional perturbation theory. The approach has been applied to bulk semiconductors, where excellent agreement is obtained between the calculated and measured intrinsic lattice thermal conductivities of silicon and germanium without any adjustable parameters. In addition, ab initio calculations of phonon thermal conductance in carbon nanotubes with isolated Stone-Wales and substitutional defects are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document