Monte Carlo simulations of two-component coulomb gases applied in surface electrodes

Author(s):  
Robert Paul Salazar Romero ◽  
Camilo Bayona Roa ◽  
Gabriel Tellez

Abstract In this work, we study the gapped Surface Electrode (SE), a planar system composed of two-conductor flat regions at different potentials with a gap G between both sheets. The computation of the electric field and the surface charge density requires solving Laplace’s equation subjected to Dirichlet conditions (on the electrodes) and Neumann Boundary Conditions over the gap. In this document, the GSE is modeled as a Two-Dimensional Classical Coulomb Gas having punctual charges +q and −q on the inner and outer electrodes, respectively, interacting with an inverse power law 1~r-potential. The coupling parameter Γ between particles inversely depends on temperature and is proportional to q2. Precisely, the density charge arises from the equilibrium states via Monte Carlo (MC) simulations. We focus on the coupling and the gap geometry effect. Mainly on the distribution of particles in the circular and the harmonically-deformed gapped SE. MC simulations differ from electrostatics in the strong coupling regime. The electrostatic approximation and the MC simulations agree in the weak coupling regime where the system behaves as two interacting ionic fluids. That means that temperature is crucial in finite-size versions of the gapped SE where the density charge cannot be assumed fully continuous as the coupling among particles increases. Numerical comparisons are addressed against analytical descriptions based on an electric vector potential approach, finding good agreement.

2013 ◽  
Vol 20 (01) ◽  
pp. 1350002 ◽  
Author(s):  
F. Giraldi ◽  
F. Petruccione

The exact dynamics of a quantum damped harmonic oscillator coupled to a reservoir of boson modes has been formally described in terms of the coupling function, both in weak and strong coupling regime. In this scenario, we provide a further description of the exact dynamics through integral transforms. We focus on a special class of spectral densities, sub-ohmic at low frequencies, and including integrable divergencies referred to as photonic band gaps. The Drude form of the spectral densities is recovered as upper limit. Starting from special distributions of coherent states as external reservoir, the exact time evolution, described through Fox H-functions, shows long time inverse power law decays, departing from the exponential-like relaxations obtained for the Drude model. Different from the weak coupling regime, in the sub-ohmic condition, undamped oscillations plus inverse power law relaxations appear in the long time evolution of the observables position and momentum. Under the same condition, the number of excitations shows trapping of the population of the excited levels and oscillations enveloped in inverse power law relaxations. Similarly to the weak coupling regime, critical configurations give arbitrarily slow relaxations useful for the control of the dynamics. If compared to the value obtained in weak coupling condition, for strong couplings the critical frequency is enhanced by a factor 4.


2004 ◽  
Vol 15 (09) ◽  
pp. 1249-1268 ◽  
Author(s):  
DENIS HORVÁTH ◽  
MARTIN GMITRA

Self-organized Monte Carlo simulations of 2D Ising ferromagnet on the square lattice are performed. The essence of the suggested simulation method is an artificial dynamics consisting of the well-known single-spin-flip Metropolis algorithm supplemented by a random walk on the temperature axis. The walk is biased towards the critical region through a feedback based on instantaneous energy and magnetization cumulants, which are updated at every Monte Carlo step and filtered through a special recursion algorithm. The simulations revealed the invariance of the temperature probability distribution function, once some self-organized critical steady regime is reached, which is called here noncanonical equilibrium. The mean value of this distribution approximates the pseudocritical temperature of canonical equilibrium. In order to suppress finite-size effects, the self-organized approach is extended to multi-lattice systems, where the feedback basis on pairs of instantaneous estimates of the fourth-order magnetization cumulant on two systems of different size. These replica-based simulations resemble, in Monte Carlo lattice systems, some of the invariant statistical distributions of standard self-organized critical systems.


1993 ◽  
Vol 48 (16) ◽  
pp. 12304-12307 ◽  
Author(s):  
Guang-Ming Zhang ◽  
Hong Chen ◽  
Xiang Wu

2018 ◽  
Vol 20 (37) ◽  
pp. 24156-24167 ◽  
Author(s):  
Eszter Mádai ◽  
Bartłomiej Matejczyk ◽  
András Dallos ◽  
Mónika Valiskó ◽  
Dezső Boda

We present a modeling study of a nanopore-based transistor computed by a mean-field continuum theory (Poisson–Nernst–Planck, PNP) and a hybrid method including particle simulation (Local Equilibrium Monte Carlo, LEMC) that is able to take ionic correlations into account including the finite size of ions.


Sign in / Sign up

Export Citation Format

Share Document