Investigation on online measurement method of injection rate for high pressure common rail diesel engine injector on multiple-injection strategies

Author(s):  
Xiyu Yang ◽  
Quan Dong ◽  
Jingdong Song ◽  
Tanqing Zhou

Abstract As a state-of-the-art injection technology, high-pressure common rail injection system (HPCRIS) has advantages including high injection pressure, adjustable injection timing and flexible injection rate. Nevertheless, the fluctuation of cyclic fuel injection mass (CFIM) in HPCRIS with multiple-injection strategy (MIS) reduces the economy of diesel engine and the stability of vibration and noise control. To realize the precise control of CFIM, the online perception of injection process is the premise. This paper presents an innovative online measurement method of injection rate on MIS. According to the evolution characteristics of water hammer pressure oscillation in the fuel system, the rule is found that the oscillation form of the water hammer is depended on the structure of HPCRIS rather than the injection condition, and the general applicability of this rule is proved by the hydraulic-electric analog method. Base on this, the real-time simulation method of the pilot water hammer oscillation wave in the same field is proposed to realize the extraction of the expansion pressure signal components of the main injection. Then the direct mathematical relationship between pressure signal and fuel injection rate is established, and the online measurement of fuel injection characteristics under MIS is realized. To improve the robustness of the algorithm a real-time calibration method of fuel sound velocity is proposed. Finally, by comparing with the offline experiment, this online measurement method of injection rate has relatively high accuracy, the CFIM error is less than 2%, and the fitting goodness of the injection rate curve exceeded 0.91. This measurement method can provide direct feedback to the electronic control unit (ECU) on the fuel injection process without changing the HPCRIS structure.

Author(s):  
Lei Zhou ◽  
Kun Yang ◽  
Zhenming Liu ◽  
Yin Wang ◽  
Miao Chi

On the basis of introducing the implementation method of variable fuel injection rate, the calculation model of a single-cylinder ultra high pressure common rail diesel engine was built, and the accuracy of this model was verified with experiments; then the effects of different fuel injection rates and fuel injection advanced angles on the performance of the ultra high pressure common rail diesel engine were analyzed with this model. The results show that the variable fuel injection rate can be realized by adjusting the opening time of electric-controlled pressure amplifier and injector solenoid valve in the ultra high pressure common rail system. With the lagging of pressurization time, the cylinder pressure, cylinder temperature, heat release rate and NOx emissions of the diesel engine decrease, while the soot emission rises. The ultra high pressure rectangle injection rate can make the diesel engine acquire best power and economy performance. With the increasing of fuel injection advanced angle, the cylinder pressure, cylinder temperature, heat release rate and NOx emission of the diesel engine rise, while the soot emission decreases first and then rises, the too small or too large fuel injection advanced angle can both reduce the power and economy performance of the diesel engine. The high fuel injection rate that matches small fuel injection advanced angle can improve power output and reduce fuel consumption of the diesel engine, and there is an optimal fuel injection advanced angle for each fuel injection rate to make the diesel engine performance achieve the best.


2002 ◽  
Vol 8 (5) ◽  
pp. 659-671 ◽  
Author(s):  
Mosaad Mosleh ◽  
Amier Al-Ali

A linear time invariant (LTI) model of a marine diesel engine is presented. The effect of the discontinuity of the fuel injection into the cylinders and the injection period is considered. The proposed discrete model consists of a sampler and zero-order-hold mechanism, representing the fuel injection process. The design of the discrete controller is based on the pole assignment of the characteristic polynomial of the closed-loop transfer function with the goal of achieving zero steady-state error, and satisfying other design specifications. A numerical example illustrating the characteristic performance of a two stroke marine diesel engine is presented.


Author(s):  
Intarat Naruemon ◽  
Long Liu ◽  
Dai Liu ◽  
Xiuzhen Ma

Abstract Multiple-injection is an effective injection strategy in order to control the advanced combustion processes in diesel engines. However, because of the multiple-injection application, cause the duration of each injection is shortened, such as the pilot injection and post-injection. The short injection duration results in a very short quasi-steady injection process so that the ramping-up and ramping-down injection processes occupied a much larger scale during the injection. As a result, this circumstance of the spray evolution not been fully understood. To investigate the diesel spray propagation with varying injection rate, visual experiments and numerical simulation analyses on diesel spray were performed. The penetrations of diesel sprays with short injection duration were obtained by reflected shadowgraphy in a combustion chamber’s constant-volume with the multi-hole injector. The diesel spray with varying injection rates was modeled by using CONVERGE CFD software and the model was calibrated and validated by the experimental data. Then diagnosed the spray characteristics including spray penetration, Sauter means diameter, as well as fuel concentration distribution, were analyzed with different injection quantities and injection rate shapes. The spray mixing analysis included that after the end-of-injection in order to consider the low-temperature combustion phenomenon. The shape of the improved injection rate in the fuel mixture considered in the case of injection ending before or after the ignition time was summarized for different conditions.


Measurement ◽  
2021 ◽  
Vol 170 ◽  
pp. 108716
Author(s):  
Quan Dong ◽  
Xiyu Yang ◽  
Hao Ni ◽  
Jingdong Song ◽  
Changhao Lu ◽  
...  

1997 ◽  
Author(s):  
Steffen Leonhardt ◽  
Ralf Schwarz ◽  
Rolf Isermann

Author(s):  
D. Shcherbik ◽  
E. Lubarsky ◽  
Y. Neumeier ◽  
B. T. Zinn ◽  
K. McManus ◽  
...  

This paper describes the application of active, open loop, control in effective damping of severe combustion instabilities in a high pressure (i.e., around 520 psi) gas turbine combustor simulator. Active control was applied by harmonic modulation of the fuel injection rate into the combustor. The open-loop active control system consisted of a pressure sensor and a fast response actuating valve. To determine the dependence of the performance of the active control system upon the frequency, the fuel injection modulation frequency was varied between 300 and 420 Hz while the frequency of instability was around 375 Hz. These tests showed that the amplitude of the combustor pressure oscillations strongly depended upon the frequency of the open loop control. In fact, the amplitude of the combustor pressure oscillations varied ten fold over the range of investigated frequencies, indicating that applying the investigated open loop control approach at the appropriate frequency could effectively damp detrimental combustion instabilities. This was confirmed in subsequent tests in which initiation of open loop modulation of the fuel injection rate at a non resonant frequency of 300Hz during unstable operation with peak to peak instability amplitude of 114 psi and a frequency of 375Hz suppressed the instability to a level of 12 psi within approximately 0.2 sec (i.e., 75 periods). Analysis of the time dependence of the spectra of the pressure oscillations during suppression of the instability strongly suggested that the open loop fuel injection rate modulation effectively damped the instability by “breaking up” (or preventing the establishment of) the feedback loop between the reaction rate and combustor oscillations that drove the instability.


Sign in / Sign up

Export Citation Format

Share Document