Performance enhancement of Scanning Electron Microscope using a Deep Convolutional Neural Network

Author(s):  
Suresh Panchal ◽  
Unnikrishnan Gopinathan ◽  
Suwarna Datar

Abstract We report noise reduction and image enhancement in Scanning Electron Microscope (SEM) imaging while maintaining a Fast-Scan rate during imaging, using a Deep Convolutional Neural Network (D-CNN). SEM images of non-conducting samples without conducting coating always suffer from charging phenomenon, giving rise to SEM images with low contrast or anomalous contrast and permanent damage to the sample. One of the ways to avoid this effect is to use Fast-Scan mode, which suppresses the charging effect fairly well. Unfortunately, this also introduces noise and gives blurred images. The D-CNN has been used to predict relatively noise-free images as obtained from a Slow-Scan from a noisy, Fast-Scan image. The predicted images from D-CNN have the sharpness of images obtained from a Slow-Scan rate while reducing the charging effect due to images obtained from Fast-Scan rates. We show that using the present method, and it is possible to increase the scanning rate by a factor of about seven with an output of image quality comparable to that of the Slow-Scan mode. We present experimental results in support of the proposed method.

Author(s):  
X Wei ◽  
C-H Lee ◽  
Z Jiang ◽  
K Jiang

Recently, microelectroforming has been extensively applied to fabricating metallic components for sensors, actuators, and other systems. Thick photoresists are used for making micromoulds for electroforming and closely related to the quality and costs of an electroforming process. In the current paper, thick UV photoresists SU8, BPR100, and KMPR are analysed and compared in their electroforming performance of nickel microcomponents. Optimized UV lithography processes are introduced for producing micromoulds in each of the resists and scanning electron microscope (SEM) images of the moulds are presented and analysed. Then, electroformed nickel components from the micromoulds are presented. Finally, applicability of the photoresists to electroforming microcomponents is discussed. Each of the resists demonstrates advantages and disadvantages to suit different applications.


2012 ◽  
Vol 550-553 ◽  
pp. 792-797 ◽  
Author(s):  
Wei Lu Zhang ◽  
Xiao Ni Shi ◽  
Xin Zhang ◽  
Chun Hua Han ◽  
Dong Zhang

Different sulfates were used as the catalysts of polyethylene terephthalate (PET) depolymerization under microwave of 250 watts, in which ZnSO4presented the best catalysis in this reaction, and the depolymerization degree (DPD) of PET was reached to 90 %. It was found that the depolymerization was occurred simultaneously on the surface and the internal parts of PET chips by the observation of scanning electron microscope (SEM) images. In addition, DPD increased with the improvement of the polarization forces of these sulfates.


2018 ◽  
Vol 55 (5B) ◽  
pp. 18
Author(s):  
Truong Thi Nam

Zinc coatings have been deposited electrochemically from cyanine free alkaline solutions containing zinc ions with the presence of polyamine 70.000 and polyvinyl alcohol at different contents. The scanning electron microscope (SEM) images showed that the size of zinc grains decreased with the presence of polyamine 70.000 and polyvinyl alcohol with smoother surface of zinc coating. The polarization measurements also revealed that the coatings with the presence of polyamine or polyvinyl alcohol possessed higher value of polarity degree. This result is in good agreement with the result obtained from SEM images.


2005 ◽  
Vol 16 (6) ◽  
pp. 715-725 ◽  
Author(s):  
Yuji Iwahori ◽  
Haruki Kawanaka ◽  
Shinji Fukui ◽  
Kenji Funahashi

Sign in / Sign up

Export Citation Format

Share Document