scholarly journals An in-situ conductometric apparatus for physicochemical characterization of solutions and in-line monitoring of separation processes at elevated temperatures and pressures

Author(s):  
Tae Jun Yoon ◽  
Jacob D. Riglin ◽  
Prashant Sharan ◽  
Robert P. Currier ◽  
Katie A. Maerzke ◽  
...  

Abstract Specific conductance and frequency-dependent resistance (impedance) data are widely utilized for understanding the physicochemical characteristics of aqueous and non-aqueous fluids and for evaluating the performance of chemical processes. However, the implementation of such an in-situ probe in high-temperature and high-pressure environments is not trivial. This work provides a description of both the hardware and software associated with implementing a parallel-type in-situ electrochemical sensor. The sensor can be used for in-line monitoring of thermal desalination processes and for impedance measurements in fluids at high temperature and pressure. A comparison between the experimental measurements on the specific conductance in aqueous sodium chloride solutions and the conductance model demonstrate that the methodology yields reasonable agreement with both the model and literature data. A combination of hardware components, a softwarebased correction for experimental artifacts, and computational fluid dynamics (CFD) calculations used in this work provide a sound basis for implementing such in-situ electrochemical sensors to measure frequency-dependent resistance spectra.

2000 ◽  
Vol 64 (2) ◽  
pp. 255-266 ◽  
Author(s):  
J. J. Reece ◽  
S. A. T. Redfern ◽  
M. D. Welch ◽  
C. M. B. Henderson

AbstractThe crystal structure of a manganoan cummingtonite, composition [M4](Na0.13Ca0.41Mg0.46Mn1.00) [M1,2,3](Mg4.87Mn0.13)(Si8O22)(OH)2, (Z = 2), a = 9.5539(2) Å, b = 18.0293(3) Å, c = 5.2999(1) Å, β = 102.614(2)° from Talcville, New York, has been refined at high temperature using in situ neutron powder diffraction. The P21/m to C2/m phase transition, observed as spontaneous strains +ε1 = −ε2, occurs at ˜107°C. Long-range disordering between Mg2+ and Mn2+ on the M(4) and M(2) sites occurs above 550°C. Mn2+ occupies the M(4) and M(2) sites preferring M(4) with a site-preference energy of 24.6±1.5 kJ mol−1. Disordering induces an increase in XMnM2 and decrease in XMnM4 at elevated temperatures. Upon cooling, the ordered states of cation occupancy are ‘frozen in’ and strains in lattice parameters are maintained, suggesting that re-equilibration during cooling has not taken place.


2019 ◽  
Vol 57 (6) ◽  
pp. 843-851
Author(s):  
Alan J. Anderson ◽  
Robert A. Mayanovic ◽  
Thomas Lee

Abstract The local structure of Ta(V) in high-temperature fluoride- and chloride-bearing acidic solutions was investigated using in situ X-ray absorption spectroscopy (XAS). All XAS spectra were collected from two solutions, designated A and B, at beamline ID-20-C at the Advanced Photon Source, Argonne National Laboratory. Spectra were collected from solution A at 350 and 400 °C and from solution B at 25, 360, and 400 °C after the solutions were sealed in a hydrothermal diamond anvil cell. Solution A was prepared by dissolving Ta2O5 powder in 5% HF solution; solution B consisted of TaCl5 dissolved in 2% HF. The dominant tantalum species in solution A at elevated temperatures was TaF83–. In contrast, TaCl6–, which was the dominant complex in solution B at room temperature, disappeared as hydroxide complexes with an average ligand number between 5 and 7 became the dominant species at 350 and 400 °C. The XAS results confirm the previously recognized effect of fluoride activity on Ta speciation in hydrothermal fluids and suggest that both fluoride and hydroxide complexes play an important role in the transport of Ta in acidic fluoride-bearing solutions involved in the formation of mineralized mica-rich replacement units in granitic pegmatites.


2003 ◽  
Vol 69 (8) ◽  
pp. 4575-4582 ◽  
Author(s):  
Hassan Brim ◽  
Amudhan Venkateswaran ◽  
Heather M. Kostandarithes ◽  
James K. Fredrickson ◽  
Michael J. Daly

ABSTRACT Deinococcus geothermalis is an extremely radiation-resistant thermophilic bacterium closely related to the mesophile Deinococcus radiodurans, which is being engineered for in situ bioremediation of radioactive wastes. We report that D. geothermalis is transformable with plasmids designed for D. radiodurans and have generated a Hg(II)-resistant D. geothermalis strain capable of reducing Hg(II) at elevated temperatures and in the presence of 50 Gy/h. Additionally, D. geothermalis is capable of reducing Fe(III)-nitrilotriacetic acid, U(VI), and Cr(VI). These characteristics support the prospective development of this thermophilic radiophile for bioremediation of radioactive mixed waste environments with temperatures as high as 55°C.


2019 ◽  
Vol 624 ◽  
pp. A136
Author(s):  
S. P. Thompson ◽  
A. Herlihy ◽  
C. A. Murray ◽  
A. R. Baker ◽  
S. J. Day ◽  
...  

Context. Laboratory analogues can provide physical constraints to the interpretation of astronomical observations of cosmic dust but clearly do not experience the same formation conditions. To distinguish between properties intrinsic to the material and properties imprinted by their means of formation requires extensive characterisation. Aims. Sol–gel methods can produce amorphous silicates with potentially high reproducibility, but often require long drying times (24+ h) at elevated temperatures in air, controlled atmosphere, or vacuum. We investigate the possibility that microwave drying can be used to form amorphous silicate on a timescale of ∼10 min and characterise their structural and spectroscopic properties relative to silicates produced by other drying methods. Methods. Microwave-dried amorphous MgSiO3, Fe0.1Mg0.9SiO3 and Mg2SiO4 are characterised using X-ray powder diffraction, total X-ray scattering, small angle X-ray scattering and mid-IR FTIR spectroscopy, and compared to samples produced from the same gels but dried in-air and under vacuum. The development of crystalline structure in the microwave-dried silicates via thermal annealing up to 999°C is also investigated using in situ X-ray powder diffraction. Results. At the inter-atomic level the silicate structures are largely independent of drying method, however larger-scale structured domains, ranging from a ∼few × 10 Å to ∼100’s Å in size, are observed. These are ordered as mass fractals with discernible variation caused by the drying processes. The mid-IR 10 μm band profile is also found to be influenced by the drying process, likely due to the way removal of water and bonded OH influences the distribution of tetrahedral species. However, microwave drying also allows Fe to be easily incorporated into the silicate structure. In situ annealing shows that for amorphous MgSiO3 crystalline forsterite, enstatite and cristobalite are high temperature phases, while for Mg2SiO4 forsterite crystallises at lower temperatures followed by cristobalite at high temperature. For Fe0.1Mg0.9SiO3 the crystallisation temperature is significantly increased and only forsterite is observed. Crystalline SiO2 may be diagnostic of Mg-rich, Fe-poor grain mineralogies. The results are discussed in relation to the different thermal conditions required for dust to crystallise within protoplanetary disk lifetimes. Conclusions. Sol–gel microwave drying provides a fast and easy method of producing amorphous Mg- and Fe,Mg-silicates of both pyroxene and olivine compositions. Their structure and spectroscopic characteristics although similar to silicates produced using other drying methods, exhibit subtle variations which are particularly manifest spectroscopically in the mid-IR, and structurally over medium- and long-range length scales.


2016 ◽  
Vol 18 (48) ◽  
pp. 32814-32819 ◽  
Author(s):  
S. Aminorroaya Yamini ◽  
D. R. G. Mitchell ◽  
M. Avdeev

Multiphase thermoelectric materials exhibit higher efficiencies than their single-phase counterparts. Here, we performed in situ high temperature structural characterisations and shown a strong chemical interaction between secondary phases and matrices at elevated temperatures.


2011 ◽  
Vol 696 ◽  
pp. 28-33
Author(s):  
Manfred Martin

In oxides which are exposed to thermodynamic potential gradients, transport processes of the mobile components occur. These transport processes and the coupling between different processes are not only of fundamental interest, but are also the origin of degradation processes, such as kinetic demixing, kinetic decomposition, and changes in the morphology of the material. The kinetics of high temperature oxidation processes of metals can be studiedin situby X-ray absorption spectroscopy (XAS), optical microscopy and X-ray diffraction (XRD) at elevated temperatures and defined oxygen partial pressures. As an example, thein situXAS investigation of the oxidation of cobalt, forming layers of CoO and Co3O4, will be discussed.


2000 ◽  
Vol 6 (S2) ◽  
pp. 374-375
Author(s):  
L. A. Dempere ◽  
M. J. Kaufman

Intermetallics are playing an important role in the development of new materials able of sustaining the escalating demands of the aerospace industry. A significant improvement in weight, operating temperatures or mechanical performance is required for materials to be considered as replacements in the most demanding applications. Molybdenum disilicide is one such compound that has potential for high temperature applications. Its most attractive properties are its high melting point (2020°C), reasonable density (6.24 g/cm3), and excellent high temperature oxidation and corrosion resistance. However, low ambient fracture toughness and loss of strength at elevated temperatures have been the most significant limitations to the use of MoSi2 in structural applications.The more promising solutions for improving the mechanical properties of brittle intermetallics such as MoSi2 are based on the incorporation and control of secondary phases. To date, the artificial introduction of reinforcing phases or their generation via in-situ reactions have been explored.


2002 ◽  
Vol 17 (10) ◽  
pp. 2489-2498 ◽  
Author(s):  
U. Koops ◽  
D. Hesse ◽  
M. Martin

The crystallographic orientation plays an important role in high-temperature oxidation of the intermetallic compound CoGa. When CoGa is exposed to air at elevated temperatures, the oxide β–Ga2O3 is formed, and different scale growth rates are observed, depending on the crystallographic orientation of the CoGa grains. This dependence is a consequence of the anisotropy of the gallium diffusion rate through the β–Ga2O3 scale and of a topotaxial orientation relationship occurring between β–Ga2O3 and CoGa. The combination of ex situ techniques, such as transmission electron microscopy and electron backscatter diffraction with optical microscopy, applied in situ resulted in a thorough understanding of these relations and of the oxidation process in general.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 617
Author(s):  
Do Thanh Binh ◽  
Tran Duc Huy ◽  
Tran Viet Thuong ◽  
Duong Ngoc Binh ◽  
Hiroyuki Miyamoto

In this study, in situ Al2O3-reinforced Ti3Al composite was fabricated after 8 h of milling and sintering at 850 °C. A mixture of TiO2 and Al powders were mechanically milled in a planetary mill, cold-compacted and sintered under a protected argon atmosphere. The microstructure and microhardness of the Al2O3 embedded in Ti3Al matrix at both room and elevated temperature has been reported. The obtained results showed that the Ti3Al/Al2O3 composite was successfully synthesized via the powder metallurgy method. Ti3Al phase and Al2O3 particles were formed after 8 h of milling and sintering at 850 °C. The microstructure formation of round and uniformly distributed Al2O3 particles in the Ti3Al matrix improved the microhardness of the composite. At normal temperature, the microhardness of the material measured about 11.5 GPa. Meanwhile, at elevated temperatures, from 600 to 800 °C, it decreased from 4.18 GPa to 3.15 GPa.


Author(s):  
Elena S. Zhitova ◽  
Andrey A. Zolotarev ◽  
Frank C. Hawthorne ◽  
Sergey V. Krivovichev ◽  
Viktor N. Yakovenchuk ◽  
...  

The high-temperature (HT) behaviour of lobanovite, K2Na(Fe2+ 4Mg2Na)Ti2(Si4O12)2O2(OH)4, was studied using in situ powder X-ray diffraction in the temperature range 25–1000°C and ex situ single-crystal X-ray diffraction of 17 crystals quenched from different temperatures. HT iron oxidation associated with dehydroxylation starts at 450°C, similar to other ferrous-hydroxy-rich heterophyllosilicates such as astrophyllite and bafertisite. A prominent feature of lobanovite HT crystal chemistry is the redistribution of Fe and Mg+Mn cations over the M(2), M(3), M(4) sites of the octahedral (O) layer that accompanies iron oxidation and dehydroxylation. This HT redistribution of cations has not been observed in titanosilicates until now, and seems to be triggered by the need to maintain bond strengths at the apical oxygen atom of the TiO5 pyramid in the heteropolyhedral (H) layer during oxidation–dehydroxylation. Comparison of the HT behaviour of lobanovite with five-coordinated Ti and astrophyllite with six-coordinated Ti shows that the geometry of the Ti polyhedron plays a key role in the HT behaviour of heterophyllosilicates. The thermal expansion, geometrical changes and redistribution of site occupancies which occur in lobanovite under increasing temperature are reported. A brief discussion is given of minerals in which the cation ordering (usually for Fe and Mg) occurs together with iron oxidation–dehydroxylation at elevated temperatures: micas, amphiboles and tourmalines. Now this list is expanded by the inclusion of titanosilicate minerals.


Sign in / Sign up

Export Citation Format

Share Document