scholarly journals Electrical conductivity enhancement of transparent silver nanowire films on temperature-sensitive flexible substrates using intense pulsed ion beam

2020 ◽  
Author(s):  
Marat Kaikanov ◽  
Aidar Kemelbay ◽  
Bauyrzhan Amanzhulov ◽  
Gulzat Demeuova ◽  
Gulnur Akhtanova ◽  
...  
Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2153
Author(s):  
Marat Kaikanov ◽  
Bauyrzhan Amanzhulov ◽  
Gulzat Demeuova ◽  
Gulnur Akhtanova ◽  
Farabi Bozheyev ◽  
...  

In this report, an improvement of the electrical performance and stability of a silver nanowire (AgNW) transparent conductive coating (TCC) is presented. The TCC stability against oxidation is achieved by coating the AgNWs with a polyvinyl alcohol (PVA) layer. As a result, a UV/ozone treatment has not affected the morphology of the AgNWs network and the PVA protection layer, unlike non-passivated TCC, which showed severe degradation. The irradiation with an intense pulsed ion beam (IPIB) of 200 ns duration and a current density of 30 A/cm2 is used to increase the conductivity of the AgNWs network without degradation of the temperature-resistant PVA coating and decrease in the TCC transparency. Simulations have shown that, although the sample temperature reaches high values, the ultra-high heating and cooling rates, together with local annealing, enable the delicate thermal processing. The developed coatings and irradiation strategies are used to prepare and enhance the performance of AgNW-based transparent heaters. A single irradiation pulse increases the operating temperature of the transparent heater from 92 to 160 °C at a technologically relevant voltage of 12 V. The proposed technique shows a great promise in super-fast, low-temperature annealing of devices with temperature-sensitive components.


2019 ◽  
Author(s):  
Patricia Scheurle ◽  
Andre Mähringer ◽  
Andreas Jakowetz ◽  
Pouya Hosseini ◽  
Alexander Richter ◽  
...  

Recently, a small group of metal-organic frameworks (MOFs) has been discovered featuring substantial charge transport properties and electrical conductivity, hence promising to broaden the scope of potential MOF applications in fields such as batteries, fuel cells and supercapacitors. In combination with light emission, electroactive MOFs are intriguing candidates for chemical sensing and optoelectronic applications. Here, we incorporated anthracene-based building blocks into the MOF-74 topology with five different divalent metal ions, that is, Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, resulting in a series of highly crystalline MOFs, coined ANMOF-74(M). This series of MOFs features substantial photoluminescence, with ANMOF-74(Zn) emitting across the whole visible spectrum. The materials moreover combine this photoluminescence with high surface areas and electrical conductivity. Compared to the original MOF-74 materials constructed from 2,5-dihydroxy terephthalic acid and the same metal ions Zn2+, Mg2+, Ni2+, Co2+ and Mn2+, we observed a conductivity enhancement of up to six orders of magnitude. Our results point towards the importance of building block design and the careful choice of the embedded MOF topology for obtaining materials with desired properties such as photoluminescence and electrical conductivity.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1975
Author(s):  
Hyeok Jo Jeong ◽  
Hong Jang ◽  
Taemin Kim ◽  
Taeshik Earmme ◽  
Felix Sunjoo Kim

We investigate the sigmoidal concentration dependence of electrical conductivity of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) processed with linear glycol-based additives such as ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), hexaethylene glycol (HEG), and ethylene glycol monomethyl ether (EGME). We observe that a sharp transition of conductivity occurs at the additive concentration of ~0.6 wt.%. EG, DEG, and TEG are effective in conductivity enhancement, showing the saturation conductivities of 271.8, 325.4, and 326.2 S/cm, respectively. Optical transmittance and photoelectron spectroscopic features are rather invariant when the glycols are used as an additive. Two different figures of merit, calculated from both sheet resistance and optical transmittance to describe the performance of the transparent electrodes, indicate that both DEG and TEG are two most effective additives among the series in fabrication of transparent electrodes based on PEDOT:PSS films with a thickness of ~50–60 nm.


1997 ◽  
Vol 498 ◽  
Author(s):  
K. F. Chan ◽  
X.-A. Zhao ◽  
C. W. Ong

ABSTRACTCNx films were deposited using pulsed laser deposition (PLD) and ion beam deposition (IBD). The PLD films deposited at substrate temperature Ts = 25°C and high N2 partial pressure have the highest N content (fN) and polymerlike structure, accompanied by large band gap (Eg) and low electrical conductivity (σroom). The rise in Ts lowers fN and induces graphitization of the film structure, so Eg reduces and σroom increases. IBD (with and without N2+ assist) films are graphitic. Higher Ts further enhances the graphitization of the film structure, such that the conduction and valence bands overlap, and σroom approaches to that of graphite. No evidence was found to show successful formation of the hypothetical β-C3N4 phase in the films.


2017 ◽  
Vol 110 (12) ◽  
pp. 121904 ◽  
Author(s):  
Pietro Cataldi ◽  
Luca Ceseracciu ◽  
Sergio Marras ◽  
Athanassia Athanassiou ◽  
Ilker S. Bayer

Sign in / Sign up

Export Citation Format

Share Document