Imaging the electrostatic landscape of unstrained self-assemble GaAs quantum dots

2022 ◽  
Author(s):  
Evandro Martin Lanzoni ◽  
Saimon Covre da Silva ◽  
Floris Knopper ◽  
Ailton J Garcia ◽  
Carlos Alberto Rodrigues Costa ◽  
...  

Abstract Unstrained GaAs quantum dots are promising candidates for quantum information devices due to their optical properties, but their electronic properties have remained relatively unexplored until now. In this work, we systematically investigate the electronic structure and natural charging of GaAs quantum dots at room temperature using Kelvin probe force microscopy (KPFM). We observe a clear electrical signal from structures demonstrating a lower surface potential in the middle of the dot. We ascribe this to charge accumulation and confinement inside these structures. Our systematical investigation reveals that the change in surface potential is larger for a nominal dot filling of 2 nm and then starts to decrease for thicker GaAs layers. Using k . p calculation, we show that the confinement comes from the band banding due to the surface Fermi level pinning. Our results indicate that these self-assembled structures could be used to study physical phenomena connected to charged quantum dots like Coulomb blockade or Kondo effect.

2020 ◽  
Vol 11 ◽  
pp. 911-921
Author(s):  
Christian Ritz ◽  
Tino Wagner ◽  
Andreas Stemmer

Kelvin probe force microscopy is a scanning probe technique used to quantify the local electrostatic potential of a surface. In common implementations, the bias voltage between the tip and the sample is modulated. The resulting electrostatic force or force gradient is detected via lock-in techniques and canceled by adjusting the dc component of the tip–sample bias. This allows for an electrostatic characterization and simultaneously minimizes the electrostatic influence onto the topography measurement. However, a static contribution due to the bias modulation itself remains uncompensated, which can induce topographic height errors. Here, we demonstrate an alternative approach to find the surface potential without lock-in detection. Our method operates directly on the frequency-shift signal measured in frequency-modulated atomic force microscopy and continuously estimates the electrostatic influence due to the applied voltage modulation. This results in a continuous measurement of the local surface potential, the capacitance gradient, and the frequency shift induced by surface topography. In contrast to conventional techniques, the detection of the topography-induced frequency shift enables the compensation of all electrostatic influences, including the component arising from the bias modulation. This constitutes an important improvement over conventional techniques and paves the way for more reliable and accurate measurements of electrostatics and topography.


AIP Advances ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 085010
Author(s):  
Tomonori Nakamura ◽  
Nobuyuki Ishida ◽  
Keisuke Sagisaka ◽  
Yasuo Koide

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Larionette P. L. Mawlong ◽  
Abhilasha Bora ◽  
P. K. Giri

AbstractHerein, we have investigated the tunability of the photoluminescence (PL) of the monolayer MoS2 (1L-MoS2) by decorating it with WS2 quantum dots (WS2 QD). The direct bandgap 1L-MoS2 and WS2 QDs are grown by chemical vapor deposition and liquid exfoliation methods, respectively. The room temperature PL spectrum of bare 1L-MoS2 is systematically quenched with its decoration with WS2 QDs at different concentrations. A decrease in the work function of 1L-MoS2 with the decoration of WS2 QDs was established from the Kelvin probe force microscopy analysis. A detailed quantitative analysis using the four-energy level model involving coupled charge transfer was employed to explain the redshift and the systematic decrease in the intensity of the PL peak in 1L-MoS2/WS2 QD heterostructure. The modulation of the PL in the heterostructure is attributed to the increase in the formation of negative trions through the charge transfer from WS2 QD to the 1L-MoS2 and thus making the 1L-MoS2 heavily n-type doped, with increase in the electron density by ~1.5 × 1013 cm−2. This study establishes the contribution of defects in the coupled charge transfer dynamics in 1L-MoS2, and it lays out a convenient strategy to manipulate the optical and electrical properties of 1L-MoS2 for various optoelectronic applications.


Sign in / Sign up

Export Citation Format

Share Document