The magnetic field dependent displacement effect and its correction in reference and relative dosimetry

Author(s):  
Tuba Tekin ◽  
Isabel Blum ◽  
Bjoern Delfs ◽  
Ann-Britt Schönfeld ◽  
Bjoern Poppe ◽  
...  

Abstract Objective This study investigates the perturbation correction factors of air-filled ionization chambers regarding their depth and magnetic field dependence. Focus has been placed on the displacement or gradient correction factor Pgr. Besides, the shift of the effective point of measurement Peff that can be applied to account for the gradient effect has been compared between the cases with and without magnetic field. Approach The perturbation correction factors have been simulated by stepwise modifications of the models of three ionization chambers (Farmer 30013, Semiflex 3D 31021 and PinPoint 3D 31022, all from PTW Freiburg). A 10 cm x 10 cm 6 MV photon beam perpendicular to the chamber’s axis was used. A 1.5 T magnetic field was aligned parallel to the chamber’s axis. The correction factors were determined between 0.4 and 20 cm depth. The shift of Peff from the chamber's reference point Pref, ∆z, was determined by minimizing the variation of the ratio between dose-to-water Dw(zref+∆z) and the dose-to-air Dair(zref) along the depth. Main Results The perturbation correction factors with and without magnetic field are depth dependent in the build-up region but can be considered as constant beyond the depth of dose maximum. Additionally, the correction factors are modified by the magnetic field. Pgr at the reference depth is found to be larger in 1.5 T magnetic field than in the magnetic field free case, where an increase of up to 1% is obserbed for the largest chamber (Farmer 30013). The magnitude of ∆z for all chambers decreases by 40% in a 1.5 T magnetic field with the sign of ∆z remains negative. Significance In reference dosimetry, the change of Pgr in a magnetic field can be corrected by applying the magnetic field correction factor kB Qmsr when the chamber is positioned with its Pref at the depth of measurement. However, due to the depth dependence of the perturbation factors, it is more convenient to apply the ∆z-shift during chamber positioning in relative dosimetry.

2021 ◽  
Author(s):  
Björn Delfs ◽  
Isabel Blum ◽  
Tuba Tekin ◽  
Ann‐Britt Schönfeld ◽  
Rafael Kranzer ◽  
...  

2017 ◽  
Vol 3 (2) ◽  
pp. 803-805
Author(s):  
Nicole Brand ◽  
Stefan Pojtinger ◽  
Savas Tsitsekidis ◽  
Daniela Thorwarth ◽  
Oliver S. Dohm

AbstractToday, hybrid systems of linear accelerator and MRI scanner are clinically available. Therefore it is important to investigate the feasibility of reference dosimetry with ionization chambers in the presence of a magnetic field and determine correction factors. In this work, correction factors under various conditions that influence the chamber response were experimentally investigated, using a conventional 6 MV linear accelerator together with a stand-alone magnet. We found that the correction factor for a PTW31010 ionization chamber ranges from 0.9873 to 1.009 depending on the magnetic field strength, magnetic field orientation and magnetic field size. The phantom material also does have an influence on the measured signal. Therefore, reference dosimetry with ionization chambers in the presence of a magnetic field is feasible, but requires dedicated correction factors, which depend on the experimental setup.


2006 ◽  
Vol 24 (12) ◽  
pp. 3411-3419 ◽  
Author(s):  
D. Martini ◽  
K. Mursula

Abstract. We study here the recently proposed measure of local geomagnetic activity called the IHV (Inter-Hour Variability) index calculated for the Eskdalemuir (ESK) station. It was found earlier that the ESK IHV index depicts an artificial, step-like increase from 1931 to 1932. We show here that this increase is due to the fact that the values of the magnetic field components of the ESK observatory stored at the World Data Center are two-hour running averages of hourly data stored in ESK yearbooks. Two-hour averaging greatly reduces the variability of the data which leads to artificially small values of the IHV index in 1911–1931. We also study the effect of two-hour averaging upon hourly mean and spot values using 1-minute data available for recent years, and calculate the correction factors for the early years, taking into account the weak dependence of correction factors on solar activity. Using these correction factors, we correct the ESK IHV indices in 1912–1931, and revise the estimate of the centennial change based on them. The effect of correction is very significant: the centennial increase in the ESK IHV-raw (IHV-cor) index in 1912–2000 changes from 73.9% (134.4%) before correction to 10.3% (25.3%) thereafter, making the centennial increase at ESK quite similar to other mid-latitude stations. Obviously, earlier long-term studies based on ESK IHV values are affected by the correction and need to be revised. These results also strongly suggest that the ESK yearbook data should be digitized and the hourly ESK data at WDC should be replaced by them.


2008 ◽  
Vol 6 (3) ◽  
pp. 195-197 ◽  
Author(s):  
刘婷 Ting Liu ◽  
陈险峰 Xianfeng Chen ◽  
狄子昀 Ziyun Di ◽  
张军锋 Junfeng Zhang ◽  
李新碗 Xinwan Li ◽  
...  

The diamagnetism of free electrons in the presence of charged impurity centres which are sufficiently dilute to be non-interacting is calculated to first order in the strength of the potential of the impurity centre. This is done by combining the density-matrix treatment of Landau diamagnetism with the impurity-screening theory o f March & Murray. The susceptibility involves the integrated value of the impurity potential through the crystal, and its first derivative with respect to the magnetic field, B. If the impurity potential is assumed to have a value appropriate to B — 0, then the result for the change in diamagnetic susceptibility on alloying agrees with that of Kohn & Luming (1963). It is shown, however, that the impurity potential is modified in the presence of the magnetic field, and in particular it has angular dependence. The correction to the dia­magnetic susceptibility due to this self-consistency is shown to be significant (25% ). The relevance of the theory to experimental results on dilute alloys is briefly discussed. Finally, as a by-product of the investigation, we have obtained interesting results about the form of the field-dependent dielectric constant.


1995 ◽  
Vol 34 (Part 1, No. 8B) ◽  
pp. 4342-4344
Author(s):  
Jonathan P. Bird ◽  
Koji Ishibashi ◽  
Yuichi Ochiai ◽  
Yoshinobu Aoyagi ◽  
Takuo Sugano

2013 ◽  
Vol 26 (3) ◽  
pp. 036002 ◽  
Author(s):  
Chris S Kelley ◽  
James Naughton ◽  
Emma Benson ◽  
Ruth C Bradley ◽  
Vlado K Lazarov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document