Beta-induced Alfvén eigenmodes and geodesic acoustic modes in presence of strong tearing activity during the current ramp-down on JET

Author(s):  
Gianluca Pucella ◽  
Edoardo Alessi ◽  
Fulvio Auriemma ◽  
Paolo Buratti ◽  
Matteo Valerio Falessi ◽  
...  

Abstract The analysis of the current ramp-down phase of JET plasmas has revealed the occurrence of additional magnetic oscillations in pulses characterized by large magnetic islands. The frequencies of these oscillations range from 5 kHz to 20 kHz, being well below the toroidal gap in the Alfven continuum and of the same order of the low-frequency gap opened by plasma compressibility. The additional oscillations only appear when the magnetic island width exceeds a critical threshold, suggesting that the oscillations could tap their energy from the tearing mode (TM) by a non-linear coupling mechanism. A possible role of fast ions in the excitation process can be excluded, being the pulse phase considered characterized by very low additional heating. The calculation of the coupled Alfven-acoustic continuum in toroidal geometry suggests the possibility of beta-induced Alfven eigenmodes (BAE) rather than beta-induced Alfven acoustic eigenmodes (BAAE). As a main novelty compared to previous works, the analysis of the electron temperature profiles from electron cyclotron emission has shown the simultaneous presence of magnetic islands on different rational surfaces in pulses with multiple magnetic oscillations in the low-frequency gap of the Alfven continuum. This observation supports the hypothesis of different BAE with toroidal mode number n = 1 associated with different magnetic islands. As another novelty, the observation of magnetic oscillations with n = 2 in the BAE range is reported for the first time in this work. Some pulses, characterized by slowly rotating tearing modes, exhibit additional oscillations with n = 0, likely associated with geodesic acoustic modes (GAM), and a cross-spectral bicoherence analysis has confirmed a non-linear interaction among TM, BAE and GAM, with the novelty of the observation of multiple triplets (twin BAEs plus GAM), due to the simultaneous presence of several magnetic islands in the plasma.

2004 ◽  
Vol 61 (7-12) ◽  
pp. 1055-1071
Author(s):  
N. N. Gerasimova ◽  
V. G. Sinitsin ◽  
Yu. M. Yampolski

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Francesco Gabriele ◽  
Mattia Udina ◽  
Lara Benfatto

AbstractThe hallmark of superconductivity is the rigidity of the quantum-mechanical phase of electrons, responsible for superfluid behavior and Meissner effect. The strength of the phase stiffness is set by the Josephson coupling, which is strongly anisotropic in layered cuprates. So far, THz light pulses have been used to achieve non-linear control of the out-of-plane Josephson plasma mode, whose frequency lies in the THz range. However, the high-energy in-plane plasma mode has been considered insensitive to THz pumping. Here, we show that THz driving of both low-frequency and high-frequency plasma waves is possible via a general two-plasmon excitation mechanism. The anisotropy of the Josephson couplings leads to markedly different thermal effects for the out-of-plane and in-plane response, linking in both cases the emergence of non-linear photonics across Tc to the superfluid stiffness. Our results show that THz light pulses represent a preferential knob to selectively drive phase excitations in unconventional superconductors.


2013 ◽  
Vol 194 (3) ◽  
pp. 1920-1940 ◽  
Author(s):  
B. N. Kuvshinov ◽  
T. J. H. Smit ◽  
X. H. Campman

1968 ◽  
Vol 27 (3_suppl) ◽  
pp. 1169-1170 ◽  
Author(s):  
Whitman Richards

An illusion analogous to Cornsweet's is used to demonstrate how the non-linear behavior of the visual system can be used to obscure low-frequency gradients. The result is a reversal of brightness—from light to dark—as the visual angle of the display is changed.


Author(s):  
Stanley M. Yamashiro ◽  
Takahide Kato

A minimal model of cerebral blood flow and respiratory control was developed to describe hypocapnic and hypercapnic responses. Important non-linear properties such as cerebral blood flow changes with arterial partial pressure of carbon dioxide (PaCO2) and associated time dependent circulatory time delays were included. It was also necessary to vary cerebral metabolic rate as a function of PaCO2. The cerebral blood flow model was added to a previously developed respiratory control model to simulate central and peripheral controller dynamics for humans. Model validation was based on previously collected data. The variable time delay due to brain blood flow changes in hypercapnia was an important determinant of predicted instability due to non-linear interaction in addition to linear loop gain considerations. Peripheral chemoreceptor gains above a critical level, but within normal limits, was necessary to produce instability. Instability was observed in recovery from hypercapnia and hypocapnia. The 20 sec breath-hold test appears to be a simple test of brain blood flow mediated instability in hypercapnia. Brain blood flow was predicted to play an important role with non-linear properties. There is an important interaction predicted by the current model between central and peripheral control mechanisms related to instability in hypercapnia recovery. Post hyperventilation breathing pattern can also reveal instability tied to brain blood flow. Previous data collected in patients with chronic obstructive lung disease was closely fitted with the current model and instability predicted. Brain vascular volume was proposed as a potential cause of instability despite cerebral autoregulation promoting constant brain flow.


1981 ◽  
Vol 42 (C5) ◽  
pp. C5-387-C5-392 ◽  
Author(s):  
Y. T. Wang ◽  
W. G.B. Britton ◽  
R. W.B. Stephens

1970 ◽  
Vol 7 (3) ◽  
pp. 544-564 ◽  
Author(s):  
Niels G. Becker

To explain the growth of interacting populations, non-linear models need to be proposed and it is this non-linearity which proves to be most awkward in attempts at solving the resulting differential equations. A model with a particular non-linear component, initially proposed by Weiss (1965) for the spread of a carrier-borne epidemic, was solved completely by different methods by Dietz (1966) and Downton (1967). Immigration parameters were added to the model of Weiss and the resulting model was made the subject of a paper by Dietz and Downton (1968). It is the aim here to further generalize the model by introducing birth and death parameters so that the result is a linear birth and death process with immigration for each population plus the non-linear interaction component.


Sign in / Sign up

Export Citation Format

Share Document