Plasma-based microwave power limitation in a printed transmission line: a self-consistent model compared with experimental data

Author(s):  
Lucas Fuster ◽  
Gerjan J M Hagelaar ◽  
Romain Pascaud ◽  
Antoine Simon ◽  
Patrick Hoffmann ◽  
...  

Abstract Plasma-based microwave power limitation in a suspended microstrip transmission line integrating a micro hollow cathode discharge (MHCD) in its center is experimentally and numerically studied. Transient and steady state microwave power measurements exhibit a limitation threshold of 28 dBm and time responses of 25 microseconds. Intensified charge-coupled device (ICCD) imaging shows that microwave breakdown occurs at the top of the MHCD. The plasma then extends towards the microwave source within the suspended microstrip transmission line. Besides, a self-consistent model is proposed to simulate the non-linear interaction between microwave and plasma. It gives numerical results in great agreement with the measurements, and show that the plasma expansion during the transient response is related to a shift between the ionization source term and the electron density maximum. The propagation speed, under the tested conditions, depends mainly on the stepwise ionization from the excited states.

2009 ◽  
Vol 76 (3-4) ◽  
pp. 305-315 ◽  
Author(s):  
DASTGEER SHAIKH

AbstractWe develop a two dimensional, self-consistent, compressible fluid model to study evolution of Alfvenic modes in partially ionized astrophysical and space plasmas. The partially ionized plasma consists mainly of electrons, ions and significant neutral atoms. The nonlinear interactions amongst these species take place predominantly through direct collision or charge exchange processes. Our model uniquely describe the interaction processes between two distinctly evolving fluids. In our model, the electrons and ions are described by a single-fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral fluid via compressible hydrodynamic equations. Both plasma and neutral fluids are treated with different energy equations that adequately enable us to monitor non-adiabatic and thermal energy exchange processes between these two distinct fluids. Based on our self-consistent model, we find that the propagation speed of Alfvenic modes in space and astrophysical plasma is slowed down because these waves are damped predominantly due to direct collisions with the neutral atoms. Consequently, energy transfer takes place between plasma and neutral fluids. We describe the mode coupling processes that lead to the energy transfer between the plasma and neutral and corresponding spectral features.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sneha Banerjee ◽  
John Luginsland ◽  
Peng Zhang

Abstract Contact resistance and current crowding are important to nanoscale electrical contacts. In this paper, we present a self-consistent model to characterize partially overlapped parallel contacts with varying specific contact resistivity along the contact length. For parallel tunneling contacts formed between contacting members separated by a thin insulating gap, we examine the local voltage-dependent variation of potential barrier height and tunneling current along the contact length, by solving the lumped circuit transmission line model (TLM) equations coupled with the tunneling current self consistently. The current and voltage distribution along the parallel tunneling contacts and their overall contact resistance are analyzed in detail, for various input voltage, electrical contact dimension, and material properties (i.e. work function, sheet resistance of the contact members, and permittivity of the insulating layer). It is found the existing one-dimensional (1D) tunneling junction models become less reliable when the tunneling layer thickness becomes smaller or the applied voltage becomes larger. In these regimes, the proposed self-consistent model may provide a more accurate evaluation of the parallel tunneling contacts. For the special case of constant ohmic specific contact resistivity along the contact length, our theory has been spot-checked with finite element method (FEM) based numerical simulations. This work provides insights on the design, and potential engineering, of nanoscale electrical contacts with controlled current distribution and contact resistance via engineered spatially varying contact layer properties and geometry.


2018 ◽  
Vol 46 (7) ◽  
pp. 2512-2520 ◽  
Author(s):  
Antoine Simon ◽  
Romain Pascaud ◽  
Thierry Callegari ◽  
Laurent Liard ◽  
Olivier Pascal

2002 ◽  
Vol 5 ◽  
pp. 65-65
Author(s):  
S. Liberatore ◽  
J.-P.J. Lafon ◽  
N. Berruyer

1989 ◽  
Vol 104 (2) ◽  
pp. 49-52
Author(s):  
Suzanne L. Hawley

AbstractPhotometric and spectroscopic observations of a very large flare on AD Leo are presented. A self consistent model of a flare corona, transition region and chromosphere is developed; in particular the chromospheric temperature distributions resulting from X-ray and EUV irradiation by coronae of various temperatures are determined. The predicted line fluxes in Hγ are compared to the observed line fluxes to find the coronal temperature as a function of time during the flare. This run of temperature with time is then compared with the predictions of an independent theoretical flare model based on a dynamic scaling law (see paper by Fisher and Hawley, these proceedings).


2020 ◽  
Vol 132 (46) ◽  
pp. 20523-20527
Author(s):  
Oishi Sanyal ◽  
Samuel S. Hays ◽  
Nicholas E. León ◽  
Yoseph A. Guta ◽  
Arun K. Itta ◽  
...  

1999 ◽  
Vol 31 (4) ◽  
pp. 217-230 ◽  
Author(s):  
R. A. Lebensohn ◽  
T. Leffers

The rules for the lattice rotation during rolling (plane strain) deformation of fcc polycrystals are studied with a viscoplastic self-consistent model. Very high values of the ratesensitivity exponent are used in order to establish Sachs-type conditions with large local deviations from the macroscopic strain. The lattice rotation depends on the grain shape. For equiaxed grains the lattice rotation follows the MA rule, which is the one normally used in solid mechanics. For elongated and flat grains the lattice rotation follows a different rule, the PSA rule. In the standard version the model performs a transition from MA to PSA with increasing strain. There is avery clear difference between the textures resulting from the two different rules. MA leads to a copper-type texture, and PSA leads to a brass-type texture.


Sign in / Sign up

Export Citation Format

Share Document