A real-time controllable electromagnetic vibration isolator based on magnetorheological elastomer with quasi-zero stiffness characteristic

2019 ◽  
Vol 28 (8) ◽  
pp. 085037 ◽  
Author(s):  
Shaogang Liu ◽  
Lifeng Feng ◽  
Dan Zhao ◽  
Xinxin Shi ◽  
Yapeng Zhang ◽  
...  
2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Sachiko Ishida ◽  
Kohki Suzuki ◽  
Haruo Shimosaka

We present a prototype vibration isolator whose design is inspired by origami-based foldable cylinders with torsional buckling patterns. The vibration isolator works as a nonlinear spring that has quasi-zero spring stiffness in a given frequency region, where it does not transmit vibration in theory. We evaluate the performance of the prototype vibration isolator through excitation experiments via the use of harmonic oscillations and seismic-wave simulations of the Tohoku-Pacific Ocean and Kobe earthquakes. The results indicate that the isolator with the current specification is able to suppress the transmission of vibrations with frequencies of over 6 Hz. The functionality and constraints of the isolator are also clarified. It has been known that origami-based foldable cylinders with torsional buckling patterns provide bistable folding motions under given conditions. In a previous study, we proposed a vibration isolator utilizing the bistability characteristics and numerically confirmed the device's validity as a vibration isolator. Here, we attempt prototyping the isolator with the use of versatile metallic components and experimentally evaluate the isolation performance.


2018 ◽  
Vol 30 (5) ◽  
pp. 701-707 ◽  
Author(s):  
Seung-Hyun Eem ◽  
Jeong-Hoi Koo ◽  
Hyung-Jo Jung

This article investigates an adaptive mount system based on magnetorheological elastomer in reducing the vibration of an equipment on the isolation table. Incorporating MR elastomers, whose elastic modulus or stiffness can be adjusted depending on the applied magnetic field, the proposed mount system strives to alleviate the limitations of existing passive-type mount systems. The primary goal of this study is to evaluate the vibration reduction performance of the proposed MR elastomer mount using the hybrid simulation technique. For real-time hybrid simulations, the MR elastomer mount and the control system are used as an experimental part, which is installed on the shaking table, and an equipment on the table is used as a numerical part. A suitable control algorithm is designed for the real-time hybrid simulations to avoid the responses of the equipment’s natural frequency by tracking the frequencies of the responses. After performing a series of real-time hybrid simulation on the adaptive mount system and the passive-type mount system under sinusoidal excitations, this study compares the effectiveness of the adaptive mount system over its passive counterpart. The results show that the proposed adaptive elastomer mount system outperforms the passive-type mount system in reducing the responses of the equipment for the excitations considered in this study.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Ying-Qing Guo ◽  
Jie Zhang ◽  
Dong-Qing He ◽  
Jin-Bao Li

The magnetorheological elastomer (MRE) is a kind of smart material, which is often processed as vibration isolation and mitigation devices to realize the vibration control of the controlled system. The key to the effective isolation of vibration and shock absorption is how to accurately and in real time determine the magnitude of the applied magnetic field according to the motion state of the controlled system. In this paper, an optimal fuzzy fractional-order PID (OFFO-PID) algorithm is proposed to realize the vibration isolation and mitigation control of the precision platform with MRE devices. In the algorithm, the particle swarm optimization algorithm is used to optimize initial values of the fractional-order PID controller, and the fuzzy algorithm is used to update parameters of the fractional-order PID controller in real time, and the fractional-order PID controller is used to produce the control currents of the MRE devices. Numerical analysis for a platform with the MRE device is carried out to validate the effectiveness of the algorithm. Results show that the OFFO-PID algorithm can effectively reduce the dynamic responses of the precision platform system. Also, compared with the fuzzy fractional-order PID algorithm and the traditional PID algorithm, the OFFO-PID algorithm is better.


Sign in / Sign up

Export Citation Format

Share Document