scholarly journals Broadband frequency conversion of ultrashort pulses using high-Q metasurface cavities

Author(s):  
Timo Stolt ◽  
Mikko J. Huttunen

Abstract Frequency conversion of light can be dramatically enhanced using high quality factor (Q-factor) cavities. Unfortunately, the achievable conversion efficiencies and conversion bandwidths are fundamentally limited by the time–bandwidth limit of the cavity, restricting their use in frequency conversion of ultrashort pulses. Here, we propose and numerically demonstrate sum-frequency generation based frequency conversion using a metasurface-based cavity configuration that could overcome this limitation. The proposed experimental configuration takes use of the spatially dispersive responses of periodic metasurfaces supporting collective surface lattice resonances (SLRs), and can be utilized for broadband frequency conversion of ultrashort pulses. We investigate a plasmonic metasurface, supporting a high-Q SLR (Q=500, linewidth of 2 nm) centred near 1000 nm, and demonstrate ~1000-fold enhancements of nonlinear signals. Furthermore, we demonstrate broadband frequency conversion with a pump conversion bandwidth reaching 75 nm, a value that greatly surpasses the linewidth of the studied cavity. Our work opens new avenues to utilize high-Q metasurfaces also for broadband frequency conversion of light.

2021 ◽  
Author(s):  
Rubén A. Fritz ◽  
Yamil J. Colón ◽  
Felipe Herrera

The discovery and design of new materials with competitive optical frequency conversion efficiencies can accelerate the development of scalable photonic quantum technologies.


Author(s):  
G. Harder ◽  
V. Ansari ◽  
T. J. Bartley ◽  
B. Brecht ◽  
C. Silberhorn

In the last few decades, there has been much progress on low loss waveguides, very efficient photon-number detectors and nonlinear processes. Engineered sum-frequency conversion is now at a stage where it allows operation on arbitrary temporal broadband modes, thus making the spectral degree of freedom accessible for information coding. Hereby the information is often encoded into the temporal modes of a single photon. Here, we analyse the prospect of using multi-photon states or squeezed states in different temporal modes based on integrated optics devices. We describe an analogy between mode-selective sum-frequency conversion and a network of spatial beam splitters. Furthermore, we analyse the limits on the achievable squeezing in waveguides with current technology and the loss limits in the conversion process. This article is part of the themed issue ‘Quantum technology for the 21st century’.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Syed Asad Hussain

AbstractSaturable Absorber (SA) is a key element of any passive mode-locked laser system to provide ultrashort laser system. So far various materials have been proposed that could be used for this purpose. However, the field is still looking for new ways to make the fabrication process easier and cost-effective. Another challenge in testing mode-locked laser systems using various SA samples is the lack of knowledge in preparing these by laser physicists given this is outside their remit of expertise. In this study, we have proposed a novel method to produce these SAs from plastic materials and glycol. Our new method relies upon increase in thickness up to a value where the modulation depth is enough to give stable ultrashort pulses. Although we have shown this method for four materials; similar approach could be applied to any material. This will open the door of unlimited families of SAs that could be easily prepared and applied without any prior knowledge in material sciences.


Author(s):  
Alexander S. Solntsev ◽  
Luca Carletti ◽  
Lei Xu ◽  
Alexander N. Poddubny ◽  
Costantino De Angelis ◽  
...  

2010 ◽  
Vol 18 (19) ◽  
pp. 20428 ◽  
Author(s):  
Ren Liqing ◽  
Li Yongfang ◽  
Li Baihong ◽  
Wang Lei ◽  
Wang Zhaohua

2014 ◽  
Vol 41 (8) ◽  
pp. 222-225 ◽  
Author(s):  
A. A. Ionin ◽  
I. O. Kinyaevskii ◽  
Yu. M. Klimachev

Sign in / Sign up

Export Citation Format

Share Document