scholarly journals Ultrafast Multidimensional Spectroscopy with Field Resolution and Noncollinear Geometry at Mid-Infrared Frequencies

Author(s):  
Thomas Deckert ◽  
Jonas Allerbeck ◽  
Takayuki Kurihara ◽  
Daniele Brida

Abstract Energetic correlations and their dynamics govern the fundamental properties of condensed matter materials. Ultrafast multidimensional spectroscopy in the mid infrared is an advanced technique to study such coherent low-energy dynamics. The intrinsic many-body phenomena in functional solid-state materials, in particular few-layer samples, remain widely unexplored to this date, because complex and weak sample responses demand versatile and sensitive detection. Here, we present a novel setup for ultrafast multidimensional spectroscopy with noncollinear geometry and complete field resolution in the 15-40 THz range. Electric fields up to few-100 kV cm-1 drive coherent dynamics in a perturbative regime, and an advanced modulation scheme allows to detect nonlinear signals down to a few tens of V cm-1 entirely background-free with high sensitivity and full control over the geometric phase-matching conditions. Our system aims at the investigation of correlations and many-body interactions in condensed matter systems at low energy. Benchmark measurements on bulk indium antimonide (InSb) reveal a strong six-wave mixing signal and map ultrafast changes of the band structure with access to amplitude and phase information. Our results pave the way towards the investigation of functional thin film materials and few-layer samples.

2014 ◽  
Vol 28 (26) ◽  
pp. 1430017 ◽  
Author(s):  
Bernd Wolf ◽  
Andreas Honecker ◽  
Walter Hofstetter ◽  
Ulrich Tutsch ◽  
Michael Lang

This article reviews some recent developments for new cooling technologies in the fields of condensed matter physics and cold gases, both from an experimental and theoretical point of view. The main idea is to make use of distinct many-body interactions of the system to be cooled which can be some cooling stage or the material of interest itself, as is the case in ultracold gases. For condensed matter systems, we discuss magnetic cooling schemes based on a large magnetocaloric effect as a result of a nearby quantum phase transition and consider effects of geometrical frustration. For ultracold gases, we review many-body cooling techniques, such as spin-gradient and Pomeranchuk cooling, which can be applied in the presence of an optical lattice. We compare the cooling performance of these new techniques with that of conventional approaches and discuss state-of-the-art applications.


2007 ◽  
Vol 85 (3) ◽  
pp. 219-230 ◽  
Author(s):  
B K Jennings ◽  
A Schwenk

Over the past five years there have been profound advances in nuclear physics based on effective field theory and the renormalization group. In this review, we summarize these advances and discuss how they impact our understanding of nuclear systems and experiments that seek to unravel their unknowns. We discuss future opportunities and focus on modern topics in low-energy nuclear physics, with special attention on the strong connections to many-body atomic and condensed-matter physics, as well as to astrophysics. This makes it an exciting era for nuclear physics. PACS Nos.: 21.60.–n, 21.30.Fe


Author(s):  
Johan F. Triana ◽  
Felipe Herrera

Abstract Controlling the quantum field statistics of confined light is a long-standing goal in integrated photonics. We show that by coupling molecular vibrations with a confined mid-infrared cavity vacuum, the photocount and quadrature field statistics of the cavity field can be reversibly manipulated over sub-picosecond timescales. The mechanism involves changing the cavity resonance frequency through a modulation of the dielectric response of the cavity materials using femtosecond UV pulses. For a single anharmonic molecular vibration in an infrared cavity under ultrastrong coupling conditions, the pulsed modulation of the cavity frequency can adiabatically produce mid- infrared light that is simultaneously sub-Poissonian and quadrature squeezed, depending on the dipolar behavior of the vibrational mode. For a vibration-cavity system in strong coupling, non-adiabatic polariton excitations can be produced after the frequency modulation pulse is over, when the system is initially prepared in the lower polariton state. We propose design principles for the generation of mid-infrared quantum light by analyzing the dependence of the cavity field statistics on the shape of the electric dipole function of the molecule, the cavity detuning at the modulation peak and the anharmonicity of the Morse potential. Feasible experimental implementations of the modulation scheme are suggested. This work paves the way for the development of molecule-based mid-infrared quantum optical devices at room temperature.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Kourosh Nozari ◽  
Z. Haghani ◽  
J. Vahedi

It has been revealed, in the context of quantum gravity candidates, that measurement of position cannot be done with arbitrary precision and there is a finite resolution of space-time points. This leads naturally to a minimal measurable length of the order of Planck length. Also, in the context of newly proposed doubly special relativity theories, a test particle’s momentum cannot be arbitrarily imprecise leading nontrivially to a maximal momentum for a test particle. These two natural cutoffs affects most of quantum field theoretic arguments in the spirit of condensed matter physics. Here we focus on the role of these natural cutoffs on Thomas-Fermi theory in condensed matter physics. We show how quantum gravity effects can play important role phenomenologically in many-body interactions of solids.


2020 ◽  
Author(s):  
Marc Riera ◽  
Alan Hirales ◽  
Raja Ghosh ◽  
Francesco Paesani

<div> <div> <div> <p>Many-body potential energy functions (PEFs) based on the TTM-nrg and MB-nrg theoretical/computational frameworks are developed from coupled cluster reference data for neat methane and mixed methane/water systems. It is shown that that the MB-nrg PEFs achieve subchemical accuracy in the representation of individual many-body effects in small clusters and enables predictive simulations from the gas to the liquid phase. Analysis of structural properties calculated from molecular dynamics simulations of liquid methane and methane/water mixtures using both TTM-nrg and MB-nrg PEFs indicates that, while accounting for polarization effects is important for a correct description of many-body interactions in the liquid phase, an accurate representation of short-range interactions, as provided by the MB-nrg PEFs, is necessary for a quantitative description of the local solvation structure in liquid mixtures. </p> </div> </div> </div>


1991 ◽  
Vol 44 (8) ◽  
pp. 4006-4009 ◽  
Author(s):  
B. B. Goldberg ◽  
D. Heiman ◽  
M. Dahl ◽  
A. Pinczuk ◽  
L. Pfeiffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document