Particle scattering by rotating trapped quantum gases at finite temperature

2021 ◽  
Author(s):  
Samir Das ◽  
Shyamal Biswas

Abstract We have analytically explored the quantum phenomena of particle scattering by rotating trapped quantum gases of electrically neutral bosons and fermions for the short-ranged Fermi-Huang interactions between the incident particle and the scatterers. We have predicted differential scattering cross-sections and their temperature and angular velocity dependencies in this regard, in particular, for an ideal Bose gas in a rotating harmonic trap, an ideal Fermi gas in a rotating harmonic trap, and a weakly interacting Bose gas in a slow rotating harmonic trap. We have theoretically probed the lattice-pattern of the vortices in a rapidly rotating strongly interacting Bose-Einstein condensate by the particle scattering method. We also have obtained de Haas-van Alphen-like oscillations in the differential scattering cross-section for an ideal ultracold Fermi gas in a rotating harmonic trap. Our predictions on the differential scattering cross-sections can be tested within the present-day experimental setups.

Author(s):  
P.A. Crozier

Absolute inelastic scattering cross sections or mean free paths are often used in EELS analysis for determining elemental concentrations and specimen thickness. In most instances, theoretical values must be used because there have been few attempts to determine experimental scattering cross sections from solids under the conditions of interest to electron microscopist. In addition to providing data for spectral quantitation, absolute cross section measurements yields useful information on many of the approximations which are frequently involved in EELS analysis procedures. In this paper, experimental cross sections are presented for some inner-shell edges of Al, Cu, Ag and Au.Uniform thin films of the previously mentioned materials were prepared by vacuum evaporation onto microscope cover slips. The cover slips were weighed before and after evaporation to determine the mass thickness of the films. The estimated error in this method of determining mass thickness was ±7 x 107g/cm2. The films were floated off in water and mounted on Cu grids.


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Hidenori Fukaya ◽  
Shoji Hashimoto ◽  
Takashi Kaneko ◽  
Hiroshi Ohki

2021 ◽  
Vol 27 (S1) ◽  
pp. 600-602
Author(s):  
Zezhong Zhang ◽  
Annick De Backer ◽  
Ivan Lobato ◽  
Sandra Van Aert ◽  
Peter Nellist

Pramana ◽  
1998 ◽  
Vol 51 (3-4) ◽  
pp. 453-461 ◽  
Author(s):  
P. Rawat ◽  
K. P. Subramanian ◽  
Vijay Kumar

Sign in / Sign up

Export Citation Format

Share Document