Predicting the onset of nucleate boiling heat flux of one-side heated flat heat sink in sub-cooled flow conditions for fusion divertor cooling

2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract For the cooling system of the future, nuclear fusion tokamak, to operate stably and continuously, it is important to identify potential hazards that may occur in the system in advance. Among the various potential hazards associated with the nuclear fusion tokamak, the onset of nucleate boiling (ONB) is a point at which the heat-transfer mechanism changes dramatically and is a crucial factor that must be addressed. In particular, the equipment inside the tokamak is loaded with a heat flux of several MW/m2 under single-side heating conditions, and it is important to predict the ONB under these special heating conditions. Therefore, in this study, the ONB of a flat heat sink was experimentally investigated under highly subcooled flow conditions. Based on the physical understanding of the thermo-hydraulic aspect of the ONB, the wall temperature gradient change point, which is mainly used in the subcooled flow condition, was selected as the ONB detection criterion. Trends in the ONB heat flux change were analyzed as representative system parameters that can be tuned in the cooling system, such as subcooling, mass flow rate, and pressure. In addition, the ONB correlations developed in the previous studies were evaluated for predicting the performance under one-side high heat load conditions. However, the large difference in the experimental conditions (range of system parameters and heating conditions) and the fact that the influence of system parameters was not reflected in the correlation resulted in high error rates. Therefore, the ONB correlation that can be used in the tokamak heat flux condition was newly developed through a dimensional analysis that can effectively reflect the influences in the correlation through dimensionless numbers. The developed correlation can be of great help in designing a diverter or blanket cooling system and establishing an operational strategy.

2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


Author(s):  
Kan Zhou ◽  
Junye Li ◽  
Zhao-zan Feng ◽  
Wei Li ◽  
Hua Zhu ◽  
...  

For improving the functionality and signal speed of electronic devices, electronic components have been miniaturized and an increasing number of elements have been packaged in the device. As a result there has been a steady rise in the amount of heat necessitated to be dissipated from the electronic device. Recently microchannel heat sinks have been emerged as a kind of high performance cooling scheme to meet the heat dissipation requirement of electronics packaging, In the present study an experimental study of subcooled flow boiling in a high-aspect-ratio, one-sided heating rectangular microchannel with gap depth of 0.52 mm and width of 5 mm was conducted with deionized water as the working fluid. In the experimental operations, the mass flux was varied from 200 to 400 kg/m2s and imposed heat flux from 3 to 20 W/cm2 while the fluid inlet temperature was regulated constantly at 90 °C. The boiling curves, flow pattern and onset of nucleate boiling of subcooled flow boiling were investigated through instrumental measurements and a high speed camera. It was found that the slope of the boiling curves increased sharply once the superheat needed to initiate the onset of nucleate boiling was attained, and the slope was greater for lower mass fluxes, with lower superheat required for boiling incipience. As for the visualization images, for relatively lower mass fluxes the bubbles generated were larger and not easy to depart from the vertical upward placed narrow microchannel wall, giving elongated bubbly flow and reverse backflow. The thin film evaporation mechanism dominated the entire test section due to the elongated bubbles and transient local dryout as well as rewetting occurred. Meanwhile the initiative superheat and heat flux of onset of nucleate boiling were compared with existing correlations in the literature with good agreement.


Author(s):  
Hongsheng Yuan ◽  
Sichao Tan ◽  
Kun Cheng ◽  
Xiaoli Wu ◽  
Chao Guo ◽  
...  

The flow rate can fluctuate in offshore nuclear power systems which are exposed to wind and waves, as well as in loops where flow instabilities occur, resulting in different thermal-hydraulic characteristics compared with that under steady flow. Among the thermal-hydraulic characteristics, onset of nucleate boiling (ONB) model determines whether the fluid is boiling, and boiling heat transfer is crucial to equipment performance and safety, both being key issues in subcooled flow boiling. Therefore, an experimental study was conducted to investigate how an imposed periodic flow oscillation affects the boiling inception and heat transfer of subcooled flow boiling of water in a vertical tube. The experiments were conducted under atmospheric pressure with the average flow rate ranging from 96kg/m2s to 287kg/m2s and heat flux ranging from 10kW/m2 to 197kW/m2. The relative pulsatile amplitude range is 0.1–0.3 and pulsatile period range is 10s-30s. Photographic images and thermal parameters such as temperatures and flow rate were recorded. The lack of nucleation site on the heated surface of the test section results in high wall superheat at ONB. The effects of pulsatile amplitude and period on superheat at boiling onset and average heat transfer were analyzed. The results show that the superheat at boiling inception is decreased when the average heat flux is lower than the heat flux at boiling inception of the corresponding steady flow, and the superheat at boiling onset is increased when the average heat flux is higher than the heat flux at boiling onset of the corresponding steady flow. The above effect of flow rate pulsation on superheat increases with increasing amplitude and decreasing period, and the mechanism can be explained by boiling nucleation theory. The lack of large active nucleation site also affects the boiling heat transfer. By comparing the contribution of nucleate boiling to heat transfer with the widely used Cooper’s pool boiling correlation, the subcooled flow boiling was found suppressed by convection. The average heat transfer of both the intermittent flow boiling and the single phase flow is influenced by flow oscillation.


Volume 3 ◽  
2004 ◽  
Author(s):  
Jason S. Bower ◽  
James F. Klausner

Recent work has demonstrated that as the bulk convective velocity in subcooled nucleate flow boiling increases, the heat transfer tends to become independent of flow orientation with respect to gravity. There is significant interest in developing heat exchangers for next generation spacecraft that operate in the gravity-independent flow boiling regime. In order to develop such heat exchangers it is important to understand the effect of gravity on the critical heat flux and to determine whether a gravity on the critical heat flux and to determine whether a gravity-independent flow boiling critical heat flux regime exists. This work describes subcooled flow boiling experiments where the critical heat flux is measured over a range of flow orientations with respect to gravity: 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. It has been found that at low bulk flow velocities there is a large variation of critical heat flux with different flow orientations. At large convective velocities, the variation of critical heat flux with different flow orientations is significantly diminished. It appears that with further increases in bulk flow velocity, a gravity-independent critical heat flux regime exists, although the current experimental facility was not capable of operating at those flow conditions.


Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The heat removal capacity of a flat heat sink was studied using subcooled flow boiling experiments, to address the thermal peaking problem. Based on the Bowring criteria, the boiling curve is divided into a partially developed nucleate boiling regime (PDB) and fully developed nucleate boiling regime (FDB), and the existing heat transfer correlations for each flow regime are evaluated. In the PDB regime, the Baburajan correlation exhibited the highest prediction rate with an average error rate of 10.92%; however, the FDB regime heat transfer correlations exhibited high error rates at very high heat flux conditions. Therefore, the authors developed a new FDB correlation using the artificial intelligence technique by correlating the bubble agitation effect, which is a mechanism of the FDB regime, and then, evaluated the qualification assessment on this basis. The mono-block plasma-facing component with a flat heat sink was found to meet all criteria (except #1.2, shutdown plasma ratcheting), and to succeed in the actual fabrication.


1993 ◽  
Vol 115 (1) ◽  
pp. 78-88 ◽  
Author(s):  
C. O. Gersey ◽  
I. Mudawar

The effects of chip protrusion on the forced-convection boiling and critical heat flux (CHF) of a dielectric coolant (FC-72) were investigated. The multi-chip module used in the present study featured a linear array of nine, 10 mm x 10 mm, simulated microelectronic chips which protruded 1 mm into a 20-mm wide side of a rectangular flow channel. Experiments were performed in vertical up flow with 5-mm and 2-mm channel gap thicknesses. For each configuration, the velocity and subcooling of the liquid were varied from 13 to 400 cm/s and 3 to 36° C, respectively. The nucleate boiling regime was not affected by changes in velocity and subcooling, and critical heat flux generally increased with increases in either velocity or subcooling. Higher single-phase heat transfer coefficients and higher CHF values were measured for the protruded chips compared to similar flush-mounted chips. However, adjusting the data for the increased surface area and the increased liquid velocity above the chip caused by the protruding chips yielded a closer agreement between the protruded and flush-mounted results. Even with the velocity and area adjustments, the most upstream protruded chip had higher single-phase heat transfer coefficients and CHF values for high velocity and/or highly-subcooled flow as compared the downstream protruded chips. The results show that, except for the most upstream chip, the performances of protruded chips are very similar to those of flush-mounted chips.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012053
Author(s):  
A. S. Shamirzaev

Abstract An experimental study of the pressure drop under subcooled flow boiling of the refrigerant R141b in a system with two slotted microchannels was carried out. A copper block with two microchannels 2 mm wide, 0.4 mm deep, and 16 mm long was used as an experimental section for testing. The mass flow rate varied in the range from 1 to 4 g/s, the initial subcooling from 20°C to 50°C. Experimental data show a significant decrease in the pressure drop when the critical heat flux is reached. The experimental data are compared with the model known from the literature. Experimental data show that the occurrence of nucleate boiling incipience at subcooled boiling corresponds to a larger heat flux than that given by the recommended correlation.


Author(s):  
Mazdak Jafarabadi ◽  
Hamidreza Chamani ◽  
Amir Malakizadi ◽  
Seyed Ali Jazayeri

In recent years, the design of an efficient cooling system together with good thermal efficiency for a new engine is becoming a critical task and therefore the need for an accurate and fast thermo-fluid simulation of engine cooling system is of vital importance. In this study, a detailed CFD and thermal FE simulation of a 12 cylinders V-type medium speed heavy duty diesel engine cooling system has been carried out using ANSYS-CFX commercial code. At first, a global model, for one bank with six cylinders, has been simulated using appropriate mesh density which ensures the accuracy of the results together with reasonable computational time. At this stage, the worst cylinder has been selected based on the wall temperature and the cooling flow rate. Later, using the inlet and outlet boundary conditions extracted from the global model, a series of detailed thermo-fluid analyses have been conducted for the worst cylinder with a finer mesh. The subcooled nucleate boiling heat transfer computation is carried out using the boiling departure lift-off (BDL) model, in which the total heat flux is assumed to be additively composed of a forced convective and a nucleate boiling component. In order to obtain the temperature field for components under consideration, a comprehensive thermal analysis has been preformed coupling with the detailed CFD analyses to reach an accepted value through transferring data between the CFD and FEA software. This method leads to an accurate prediction of the wall temperature and heat flux. It is observed that at hot spots, nucleate boiling occurs for low coolant flow regions specifically around the cylinder head’s exhaust port and liner coolant side wall. Also a considerable increment in the Heat Transfer Coefficient (HTC) has been observed on the superheated regions where the boiling is initiated.


Author(s):  
Akira Oshima ◽  
Koichi Suzuki ◽  
Chungpyo Hong ◽  
Masataka Mochizuki

It has been considered that the dry-out is easy to occur in boiling heat transfer for a small channel, a mini or microchannel because the channel was easily filled with coalescing vapor bubbles. In the present study, the experiments of subcooled flow boiling of water were performed under atmospheric condition for a horizontal rectangular channel of which size is 1mm in height and 1mm in width with a flat heating surface of 10mm in length and 1mm in width placed on the bottom of the channel. The heating surface is a top of copper heating block and heated by ceramics heaters. In the high heat flux region of nucleate boiling, about 70 ∼ 80 percent of heating surface was covered with a large coalescing bubble and the boiling reached critical heat flux (CHF) by a high speed video observation. In the beginning of transition boiling, coalescing bubbles were collapsed to many fine bubbles and microbubble emission boiling was observed at higher liquid subcooling than 30K. The maximum heat flux obtained was 8MW/m2 (800W/cm2) at liquid subcooling of higher than 40K and the liquid velocity of 0.5m/s. However, the surface temperature was extremely higher than that of centimeter scale channel. The high speed video photographs indicated that microbubble emission boiling occurs in the deep transition boiling region.


Sign in / Sign up

Export Citation Format

Share Document