Use of symmetric Sagnac dual-ring scheme for tunable single-mode erbium fiber laser

2022 ◽  
Author(s):  
Yi-Chi Chen ◽  
Chien-Hung Yeh ◽  
Wen-Piao Lin ◽  
Li-Hung Liu ◽  
Han-Shin Ko ◽  
...  

Abstract In this paper, an erbium-doped fiber (EDF) laser with symmetric Sagnac dual-ring scheme is experimentally studied to achieve tunable and stable continuous-wave (CW) single-longitudinal-mode (SLM) presentation. In the measurement, the obtained wavelength-tuning bandwidth can be reached from 1518.0 to 1578.0 nm based on a C-band EDF gain-medium. Moreover, the corresponding output power, optical signal to noise ratio (OSNR) and wavelength linewidth of the designed EDF laser are studied and performed simultaneously.

Author(s):  
Nur Ameelia Abdul Kadir ◽  
Nurul Alina Afifi Norizan ◽  
Azura Hamzah

<span>A nonlinear polarization rotation technique-based mode-locked erbium-doped fiber laser has been experimentally demonstrated using a 0.75 m long highly concentrated erbium-doped fiber as the gain medium. With unintentional polarization dependent loss induced by twisting single-mode fiber in an intracavity polarization controller, the optical output of the laser shifts from continuous wavelength to modelocked soliton pulse. A stable and cleaner pulse with a repetition rate of 15.32 MHz laser wavelengths and a pulse energy of 0.496 nJ with optical signal-to noise ratio of more than 33 dB are successfully obtained using a simple ring cavity.</span>


2021 ◽  
Author(s):  
R. A. Perez-Herrera ◽  
P. Roldan-Varona ◽  
M. Galarza ◽  
S. Sañudo-Lasagabaster ◽  
L. Rodriguez-Cobo ◽  
...  

Abstract A hybrid Raman-erbium random fiber laser (RFL) with a half-open cavity assisted by chirped artificially controlled backscattering fiber reflectors (ACBFRs) is presented. A combination of 2.4 km of dispersion compensating fiber (DCF) with two highly erbium-doped fiber (EDF) pieces of 5 m length was used as gain medium. A single random laser emission line centered at 1553.8 nm with an output power level of -6.5 dBm and an optical signal to noise ratio (OSNR) of 47 dB was obtained when pumped at 37.5 dBm. A full width at half maximum (FHWM) of 1 nm and a 100% confidence level (CL) output power instability as low as 0.08 dB were measured. The utilization of the new laser cavity as a temperature and strain sensor is also experimentally studied.


2012 ◽  
Vol 38 (1) ◽  
pp. 19 ◽  
Author(s):  
Gaomeng Wang ◽  
Li Zhan ◽  
Jinmei Liu ◽  
Tao Zhang ◽  
Jun Li ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. A. Perez-Herrera ◽  
P. Roldan-Varona ◽  
M. Galarza ◽  
S. Sañudo-Lasagabaster ◽  
L. Rodriguez-Cobo ◽  
...  

AbstractA hybrid Raman-erbium random fiber laser with a half-open cavity assisted by chirped artificially controlled backscattering fiber reflectors is presented. A combination of a 2.4 km-long dispersion compensating fiber with two highly erbium-doped fiber pieces of 5 m length were used as gain media. A single random laser emission line centered at 1553.8 nm with an optical signal to noise ratio of 47 dB were obtained when pumped at 37.5 dBm. A full width at half maximum of 1 nm and a 100% confidence level output power instability as low as 0.08 dB were measured. The utilization of the new laser cavity as a temperature and strain sensor is also experimentally studied.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015101
Author(s):  
Gangxiao Yan ◽  
Weihua Zhang ◽  
Peng Li ◽  
Qiuhao Jiang ◽  
Meng Wu ◽  
...  

Abstract A switchable and tunable erbium-doped fiber laser with a linear cavity based on fiber Bragg gratings embedded in Sagnac rings is proposed and experimentally verified. Due to the stress birefringence effect and the polarized hole burning effect, which are introduced into the single-mode fiber in the polarization controllers (PCs) by the PCs, the designed laser can achieve seven kinds of laser-states output including three kinds of single-wavelength laser states, three kinds of dual-wavelength laser states and one kind of triple-wavelength laser state. The optical signal-to-noise ratios of the output wavelengths are all higher than 52 dB, and the wavelength shifts are all less than 0.04 nm. Furthermore, the temperature tuning of the wavelength range is also researched, which is about 1.2 nm. Due to advantages, such as low cost, simple structure, easy switching and multiple laser states, the designed laser has great application potential in laser radar, optical fiber sensing and so on.


2018 ◽  
Vol 11 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Sandeep Kaushal ◽  
Bambam Kumar ◽  
Dharmendra Singh

AbstractIn through the wall imaging systems, wall parameters like its thickness and dielectric constant play an important role in the true and correct image formation of an object behind the wall made of various materials like brick cement, wood, plastic, etc. Incorrect estimation of these parameters leads to dislocation of the object and smearing or blurriness of the image too. A new autofocusing technique for a stepped frequency continuous wave -based radar at the frequency of 1–3 Ghz has been developed that corrects the wall's parameters like its thickness and dielectric constant and provides a better focused image of the target. For this purpose, a peak signal to noise ratio -based autofocusing technique has been developed by using curve fitting and the genetic algorithm. It is observed that the proposed technique has capability to focus the image up to good extent.


Sign in / Sign up

Export Citation Format

Share Document