Reply to Comment on 'Inverse problem from the discrete spectrum in the D = 2 dimensional space'

2022 ◽  
Author(s):  
Roland Lombard ◽  
Rabia Yekken

Abstract We want to thank our colleague F. Fernandez for his interest and his careful reading of our paper "The inverse problem from discrete spectrum in the D = 2 dimensional space". We are confused to have left a number of mistakes in the manuscript.

2022 ◽  
Author(s):  
Francisco Marcelo Fernandez

Abstract We analyse a method for the construction of the potential-energy function from the moments of the ground-state density. The sum rule on which some expressions are based appear to be wrong, as well as the moments and potential-energy functions derived for some illustrative examples.


2020 ◽  
Vol 28 (4) ◽  
pp. 499-516
Author(s):  
Zewen Wang ◽  
Shuli Chen ◽  
Shufang Qiu ◽  
Bin Wu

AbstractThis paper is concerned with the inverse problem for determining the space-dependent source and the initial value simultaneously in a parabolic equation from two over-specified measurements. By means of transforming information of the initial value into the source term and obtaining a combined source term, the parabolic equation problem is converted into a parabolic problem with homogeneous conditions. Then the considered inverse problem is formulated into a regularized minimization problem, which is implemented by the finite element method based on solving a sequence of well-posed direct problems. The uniqueness of inverse solutions are proved by the solvability of the corresponding variational problem, and the conditional stability as well as the convergence rate of regularized solutions are also provided. Then the error estimate of approximate regularization solutions is presented in the finite-dimensional space. The proposed method is a very fast non-iterative algorithm, and it can successfully solve the multi-dimensional inverse problem for recovering the space-dependent source and the initial value simultaneously. Numerical results of five examples including one- and two-dimensional cases show that the proposed method is efficient and robust with respect to data noise.


Author(s):  
А.В. Гончарский ◽  
С.Ю. Романов ◽  
С.Ю. Серёжников

Статья посвящена разработке эффективных методов 3D акустической томографии. Обратная задача рассматривается как коэффициентная обратная задача для уравнения гиперболического типа относительно неизвестных функций скорости звука и коэффициента поглощения в трехмерном пространстве. Математическая модель описывает такие явления, как дифракция, рефракция, переотражение и поглощение ультразвука. Трудности решения обратной задачи связаны с ее нелинейностью. Предложен метод низкочастотной 3D акустической томографии, который основан на использовании коротких зондирующих импульсов двух центральных частот~$f_1$ и $f_2>f_1$, не превосходящих 500 кГц. В качестве алгоритма решения обратной задачи используется итерационный градиентный метод на частоте $f_2$, в котором в качестве начального приближения используются распределения скорости звука и коэффициента поглощения, полученные как результат решения обратной задачи на частоте $f_1$. Эффективность предложенного метода акустической томографии проиллюстрирована решением модельных задач при параметрах, близких к задачам ультразвукового зондирования мягких тканей в медицине. Предложенный метод низкочастотной 3D акустической томографии позволяет получить пространственное разрешение порядка 2--3 мм при контрасте скорости не более 10%. Разработанные алгоритмы легко распараллеливаются на GPU-кластерах. This paper is devoted to the development of efficient methods for 3D acoustic tomography. The inverse problem of acoustic tomography is formulated as a coefficient inverse problem for a hyperbolic equation where the sound speed and the absorption factor are unknown in three-dimensional space. The mathematical model describes the effects of diffraction, refraction, multiple scattering, and the ultrasound absorption. Substantial difficulties in solving this inverse problem are due to its nonlinear nature. A method of low-frequency 3D acoustic tomography based on using short sounding pulses of two different central frequencies not exceeding 500 kHz is proposed. The method employs an iterative gradient-based minimization algorithm at the higher frequency with the initial approximation of unknown coefficients obtained by solving the inverse problem at the lower frequency. The efficiency of the proposed method is illustrated by solving a model problem with acoustic parameters close to those of soft tissues. The proposed method makes it possible to obtain a spatial resolution of 2--3 mm while the sound speed contrast does not exceed 10%. The developed algorithms can be efficiently parallelized using GPU clusters.


2021 ◽  
Vol 93 (2) ◽  
Author(s):  
Oles Dobosevych ◽  
Rostyslav Hryniv

AbstractFor a given self-adjoint operator A with discrete spectrum, we completely characterise possible eigenvalues of its rank-one perturbations B and discuss the inverse problem of reconstructing B from its spectrum.


Sign in / Sign up

Export Citation Format

Share Document