Experimental resources needed to implement photon number splitting attack in quantum cryptography

2022 ◽  
Vol 19 (2) ◽  
pp. 025203
Author(s):  
S P Kulik ◽  
K S Kravtsov ◽  
S N Molotkov

Abstract The analysis of the security of quantum key distribution systems with respect to an attack with nondemolishing measurement of the number of photons (photon number splitting—PNS attack) is carried out under the assumption that in the communication channel in each parcel there is a pure Fock state with a different number of photons, and the distribution of states by number of photons has Poisson statistics. In reality, in the communication channel in each parcel there are not individual Fock states, but a pure coherent state with a random phase—a superposition of Fock states with different numbers of photons. The paper analyzes the necessary experimental resources necessary to prepare individual Fock states with a certain number of photons from the superposition of Fock states for a PNS attack. Optical schemes for implementing such an attack are given, and estimates of experimental parameters at which a PNS attack is possible are made.

1981 ◽  
Vol 34 (4) ◽  
pp. 357
Author(s):  
GJ Troup ◽  
HS Perlman

A laser field may be idealized as a coherent state, but it is often more convenient to use Fock states fQr quantum electrodynamical calculations. A Fock state implies fluctuations in the field intensity, aptl a constant field intensity (coherent state) implies fluctuations in the photon number. Both these effects are discussed rigorously. When the average photon number tends to infinity, these different states become asymptotically indistinguishable.


Author(s):  
Carl F Sabottke ◽  
Chris D Richardson ◽  
Petr Anisimov ◽  
Ulvi Yurtsever ◽  
Antia Lamas-Linares ◽  
...  

2012 ◽  
Vol 14 (4) ◽  
pp. 043003 ◽  
Author(s):  
Carl F Sabottke ◽  
Chris D Richardson ◽  
Petr M Anisimov ◽  
Ulvi Yurtsever ◽  
Antia Lamas-Linares ◽  
...  

2017 ◽  
Vol 31 (11) ◽  
pp. 1750119 ◽  
Author(s):  
Junaid ur Rehman ◽  
Saad Qaisar ◽  
Youngmin Jeong ◽  
Hyundong Shin

Quantum key distribution (QKD) schemes rely on the randomness to exchange secret keys between two parties. A control key to generate the same (pseudo)-randomness for the key exchanging parties increases the key exchange rate. However, the use of pseudo-randomness where true randomness is required makes a classical system vulnerable to the known plain-text attack. Contrary to the belief of unavailability of this attack in QKD, we show that this attack is actually possible whenever a control key is employed. In this paper, we show that it is possible to make use of the uncertainty principle to not only avoid this attack, but also remove the hazards of photon-number splitting attack in quantum setting. We define the secrecy of control key based on the guessing probability, and propose a scheme to achieve this defined secrecy. We show the general applicability of our framework on the most common QKD schemes.


Sign in / Sign up

Export Citation Format

Share Document