Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3

2021 ◽  
Author(s):  
Yao-Dong Wu ◽  
Wei-Wei Duan ◽  
Qiu-Yue Li ◽  
Yong-Liang Qin ◽  
Zhen-Fa Zi ◽  
...  

Abstract The magnetic and magnetocaloric properties were studied in a stuffed honeycomb polycrystalline antiferromagnet GdInO3. The onset temperature of antiferromagnetic ordering was observed at ~ 2.1 K. Negligible thermal and magnetic hysteresis suggest a reversible magnetocaloric effect (MCE) in the GdInO3 compound. In the magnetic field changes of 0–50 kOe and 0–70 kOe, the maximum magnetic entropy change values are 9.65 J/kg K and 18.37 J/kg K, respectively, near the liquid helium temperature, with the corresponding relative cooling power values of 115.01 J/kg and 211.31 J/kg. The MCE investigation of the polycrystalline GdInO3 serves to illuminate more exotic properties in this frustrated stuffed honeycomb magnetic system.

2015 ◽  
Vol 9 (1) ◽  
pp. 11-15 ◽  
Author(s):  
Mahmoud Hamad

The enhanced low-field magnetocaloric effect was investigated for double perovskite Sr2FeMoO6 - silver (SFMO/Ag) composites with 0, 5 and 10 wt.% of Ag. A phenomenological model was used to predict magnetocaloric properties of SFMO/Ag composites, such as magnetic entropy change, heat capacity change and relative cooling power. It was shown that magnetic entropy change (?S M) peaks of SFMO/Ag span over a wide temperature region, which can significantly improve the global efficiency of the magnetic refrigeration. Furthermore, the ?S M distribution of the SFMO/Ag composites is much more uniform than that of gadolinium. Through these results, SFMO/Ag composite has some potential application for magnetic refrigerants in an extended high-temperature range.


2017 ◽  
Vol 11 (3) ◽  
pp. 225-228 ◽  
Author(s):  
Mahmoud Hamad

Magnetocaloric properties of La0.666Sr0.373Mn0.943Cu0.018O3 (LSMCO) perovskite (such as magnetic entropy change, full-width at half-maximum, relative cooling power and magnetic specific heat change) at applied magnetic field of 0.05 T were calculated using the phenomenological model. The results indicate the prospective application of LSMCO due to high magnetocaloric effect near the Curie temperature. Furthermore, the magnetocaloric properties of LSMCO sample are comparable with magnetocaloric properties of MnAs film, La1-xCdxMnO3 and La1.25Sr0.75MnCoO6, and significantly larger than that of Gd1-xCaxBaCo2O5.5 and Ge0.95Mn0.05. It is recommended that magnetocaloric effect of LSMCO can be used as a promising practical material of an apparatus based on the active magnetic regenerator cycle.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 278 ◽  
Author(s):  
Mohamed Tadout ◽  
Charles-Henri Lambert ◽  
Mohammed El Hadri ◽  
Abdelilah Benyoussef ◽  
Mohammed Hamedoun ◽  
...  

We investigated the magnetic and magnetocaloric properties of Gd100-xCox ( x = 40 to 56) thin films fabricated by the sputtering technique. Under an applied field change Δ H = 20 kOe , the magnetic entropy change ( Δ S m ) decreases from 2.64 Jkg−1K−1 for x = 44 to about 1.27 Jkg−1K−1 for x = 56. Increasing the Co concentration from x = 40 to 56 shifts the Curie temperature of Gd100-xCox ( x = 40 to 56) thin films from 180 K toward 337 K. Moreover, we extracted the values of critical parameters Tc, β, γ, and δ by using the modified Arrott plot methods. The results indicate the presence of a long-range ferromagnetic order. More importantly, we showed that the relative cooling power (RCP), which is a key parameter in magnetic refrigeration applications, is strongly enhanced by changing the Co concentration in the Gd100-xCox thin films. Our findings help pave the way toward the enhancement of the magnetocaloric effect in magnetic thin films.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1741
Author(s):  
Ping Han ◽  
Ziyang Zhang ◽  
Jia Tan ◽  
Xue Zhang ◽  
Yafang Xu ◽  
...  

To investigate the effect of crystallization treatment on the structure and magnetocaloric effect of Gd60Co40 amorphous alloy, the melt-spun ribbons were annealed at 513 K isothermally for 20, 40 and 60 min. The results indicate that, with increasing annealing time, the Gd4Co3 (space group P63/m) and Gd12Co7 (space group P21/c) phases precipitated from the amorphous precursor in sequence. In particular, in the samples annealed for 40 and 60 min, three successive magnetic transitions corresponding to the phases of Gd4Co3, Gd12Co7 and remaining amorphous matrix were detected, which induced an overlapped broadened profile of magnetic entropy change (|ΔSM|) versus temperature. Under magnetic field changing from 0 to 5 T, |ΔSM| values of 6.65 ± 0.1 kg−1·K−1 and 6.44 ± 0.1 J kg−1·K−1 in the temperature spans of 180–196 K and 177–196 K were obtained in ribbons annealed for 40 and 60 min, respectively. Compared with the fully amorphous alloy, the enhanced relative cooling power and flattened magnetocaloric effect of partially crystallized composites making them more suitable for the Ericsson thermodynamic cycle.


2015 ◽  
Vol 233-234 ◽  
pp. 243-246
Author(s):  
A.I. Smarzhevskaya ◽  
S.A. Nikitin ◽  
Viktor N. Verbetsky ◽  
Wacław Iwasieczko ◽  
Alexey N. Golovanov

The paper presents the investigation of GdNiH3.2 and TbNiH3.4 hydrides magnetic transitions and magnetocaloric properties. The isothermal magnetization data in the fields up to 5T are obtained for GdNi and TbNi compounds and their hydrides and the values of magnetic entropy change are calculated. The maximum values of magnetic entropy change ΔSM in GdNiH3.2 and TbNiH3.4 are extremely large. It is shown that the hydrogenation shifts ΔSM(T) maximum to lower temperatures.


2006 ◽  
Vol 20 (18) ◽  
pp. 2527-2536
Author(s):  
H. GENCER

In this study, we investigate magnetic entropy variation and magnetocaloric properties as a function of frustration by considering a spin-1/2 antiferromagnetic Heisenberg model on a square lattice with nearest (J1) and next-nearest neighbor exchange interaction (J2). We show that the degree of frustration in the square lattice increases with α=J2/J1. While the square lattice is unfrustrated for α = 0, it becomes fully frustrated for α=0.5. Numerical results show that the entropy of the square lattice approaches zero for the unfrustrated case at T=1 K. In contrast, finite entropy can survive in the frustrated case at the same temperature. We also calculate the magnetic entropy change (ΔSm) in the square lattice and show that the maximum value of ΔSm increases with increasing α. These results indicate that the magnetic entropy change and consequently the magnetocaloric effect can be enhanced by increasing the degree of frustration. We conclude that the enhanced magnetocaloric effect is related to quantum fluctuations and disordered ground state present in the frustrated square lattice.


2021 ◽  
Vol 63 (10) ◽  
pp. 1551
Author(s):  
E.M. Ahmed ◽  
H.R. Alamri ◽  
S.M. Elghnam ◽  
O. Eldarawi ◽  
T.E. Tawfik ◽  
...  

Low magnetic field magnetocaloric (MC) properties of La1-xSrxCoO3 (x=0.3 and 0.5) near phase transition from a ferromagnetic to a paramagnetic state were investigated. It is shown that the change of Sr content allows MC effect in La1-xSrxCoO3 to be tunable, which is more practical for construction of MC refrigeration. MC properties of the x=0.5 sample are significantly greater than that of the x=0.3 one. Furthermore, the results show that MC properties of La1-xSrxCoO3 samples are significantly larger, and comparable with some MC properties of many materials like Gd1-xCaxBaCo2O5.5 and Ge0.95Mn0.05. Keywords: magnetocaloric effect, La1-xSrxCoO3, magnetic entropy change.


Author(s):  
Thi Anh Ho ◽  
Huyen Ngoc Nguyen ◽  
Thang Duc Pham

Nd0.6Sr0.4MnO3 sample is fabricated by a solid-state reaction method and its magnetic, magnetocaloric properties are investigated. The Curie temperature, TC, at which a ferromagnetic-paramagnetic transition occurs is about 270 K. Based on an analysis using the Banejee’s criterion for the experiment results of magnetic-field dependences of magnetization and the universal curves of the normalized entropy change versus reduced temperature, we assess magnetic order existing in this sample. Furthermore, the maximum magnetic entropy change, which occurs near TC, measured at a magnetic field span of 50 kOe is about 6.0 J/kg.K corresponds to relative cooling power of 250 J/kg. These values are comparable to those of other manganites.


2013 ◽  
Vol 683 ◽  
pp. 56-59 ◽  
Author(s):  
Jian Hua Lin ◽  
Shan Dong Li ◽  
Li Li Wang ◽  
Jie Qiu ◽  
Zhi Yi Cai ◽  
...  

The room-temperature magnetocaloric effect (MCE) of Cox(MnSb)1-x (x=0.07, 0.15, 0.24) alloys has been investigated. It is revealed that the Curie temperature TC and the magnetic entropy change ΔSM are sensitive to the Co content x. When x=0.15, the MCE of Co0.15(MnSb)0.85 alloy is optimal with ΔSM=1.8 J/kg.K at 324 K under an applied magnetic field of 3 T. A second-order phase transformation occurs around TC, and the magnetic hysteresis loss thermal lag is negligible. These features demonstrate that Co0.15(MnSb)0.85 alloy is a promising room-temperature magnetocaloric materials.


RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75562-75569 ◽  
Author(s):  
K. P. Shinde ◽  
S. H. Jang ◽  
M. Ranot ◽  
B. B. Sinha ◽  
J. W. Kim ◽  
...  

The most extensive cooling techniques based on gases have faced environmental problems. The magnetic refrigeration is an alternative technology based on magnetocaloric effect. HoN nanoparticles are good refrigerant material at low temperature.


Sign in / Sign up

Export Citation Format

Share Document