Investigation of Medical Image Segmentation Using Machine Learning Based Fuzzy Reliability Function for MIoT

2020 ◽  
Vol 1501 ◽  
pp. 012016
Author(s):  
S H Omran ◽  
M H Ali ◽  
M A Hajer
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xuehu Wang ◽  
Zhiling Zhang ◽  
Kunlun Wu ◽  
Xiaoping Yin ◽  
Haifeng Guo

The gray contrast between the liver and other soft tissues is low, and the boundary is not obvious. As a result, it is still a challenging task to accurately segment the liver from CT images. In recent years, methods of machine learning have become a research hotspot in the field of medical image segmentation because they can effectively use the “gold standard” personalized features of the liver from different data. However, machine learning usually requires a large number of data samples to train the model and improve the accuracy of medical image segmentation. This paper proposed a method for liver segmentation based on the Gabor dictionary of sparse image blocks with prior boundaries. This method reduced the number of samples by selecting the test sample set within the initial boundary area of the liver. The Gabor feature was extracted and the query dictionary was created, and the sparse coefficient was calculated to obtain the boundary information of the liver. By optimizing the reconstruction error and filling holes, a smooth liver boundary was obtained. The proposed method was tested on the MICCAI 2007 dataset and ISBI2017 dataset, and five measures were used to evaluate the results. The proposed method was compared with methods for liver segmentation proposed in recent years. The experimental results show that this method can improve the accuracy of liver segmentation and effectively repair the discontinuity and local overlap of segmentation results.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
Steven Hicks ◽  
Debesh Jha ◽  
Vajira Thambawita ◽  
Pål Halvorsen ◽  
Bjørn-Jostein Singstad ◽  
...  

MedAI: Transparency in Medical Image Segmentation is a challenge held for the first time at the Nordic AI Meet that focuses on medical image segmentation and transparency in machine learning (ML)-based systems. We propose three tasks to meet specific gastrointestinal image segmentation challenges collected from experts within the field, including two separate segmentation scenarios and one scenario on transparent ML systems. The latter emphasizes the need for explainable and interpretable ML algorithms. We provide a development dataset for the participants to train their ML models, tested on a concealed test dataset.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Feng-Ping An ◽  
Jun-e Liu

Medical image segmentation is a key technology for image guidance. Therefore, the advantages and disadvantages of image segmentation play an important role in image-guided surgery. Traditional machine learning methods have achieved certain beneficial effects in medical image segmentation, but they have problems such as low classification accuracy and poor robustness. Deep learning theory has good generalizability and feature extraction ability, which provides a new idea for solving medical image segmentation problems. However, deep learning has problems in terms of its application to medical image segmentation: one is that the deep learning network structure cannot be constructed according to medical image characteristics; the other is that the generalizability y of the deep learning model is weak. To address these issues, this paper first adapts a neural network to medical image features by adding cross-layer connections to a traditional convolutional neural network. In addition, an optimized convolutional neural network model is established. The optimized convolutional neural network model can segment medical images using the features of two scales simultaneously. At the same time, to solve the generalizability problem of the deep learning model, an adaptive distribution function is designed according to the position of the hidden layer, and then the activation probability of each layer of neurons is set. This enhances the generalizability of the dropout model, and an adaptive dropout model is proposed. This model better addresses the problem of the weak generalizability of deep learning models. Based on the above ideas, this paper proposes a medical image segmentation algorithm based on an optimized convolutional neural network with adaptive dropout depth calculation. An ultrasonic tomographic image and lumbar CT medical image were separately segmented by the method of this paper. The experimental results show that not only are the segmentation effects of the proposed method improved compared with those of the traditional machine learning and other deep learning methods but also the method has a high adaptive segmentation ability for various medical images. The research work in this paper provides a new perspective for research on medical image segmentation.


2020 ◽  
Vol 22 (1) ◽  
pp. 127-153
Author(s):  
John A. Onofrey ◽  
Lawrence H. Staib ◽  
Xiaojie Huang ◽  
Fan Zhang ◽  
Xenophon Papademetris ◽  
...  

Sparsity is a powerful concept to exploit for high-dimensional machine learning and associated representational and computational efficiency. Sparsity is well suited for medical image segmentation. We present a selection of techniques that incorporate sparsity, including strategies based on dictionary learning and deep learning, that are aimed at medical image segmentation and related quantification.


2019 ◽  
Vol 31 (6) ◽  
pp. 1007 ◽  
Author(s):  
Haiou Wang ◽  
Hui Liu ◽  
Qiang Guo ◽  
Kai Deng ◽  
Caiming Zhang

Sign in / Sign up

Export Citation Format

Share Document