scholarly journals Finite Element Analysis of Misalignment and Contact State on the Interface of Bearing Bore Under Preload Condition

2021 ◽  
Vol 1748 ◽  
pp. 062049
Author(s):  
Zhaohang Meng ◽  
Wei Ma ◽  
Ping Zhou ◽  
Zhenyu Zhang ◽  
Ze Ding
2012 ◽  
Vol 215-216 ◽  
pp. 1197-1200 ◽  
Author(s):  
Lei Lei ◽  
Xiao Chun Shi ◽  
Tian Min Guan

In order to validate the force analysis between cycloid gear and pin wheel, the paper built the contact FEM model of between cycloid gear and pin teeth, analyzed statically three-dimensional contact analysis for them and get their contact state. The calculation results coincided with the force analysis method and proved the correctness of the stress analysis theory.


2002 ◽  
Vol 11 (1) ◽  
pp. 30-40 ◽  
Author(s):  
Chatchai Kunavisarut ◽  
Lisa A. Lang ◽  
Brian R. Stoner ◽  
David A. Felton

2019 ◽  
Vol 13 (3) ◽  
pp. 5242-5258
Author(s):  
R. Ravivarman ◽  
K. Palaniradja ◽  
R. Prabhu Sekar

As lined, higher transmission ratio drives system will have uneven stresses in the root region of the pinion and wheel. To enrich this agility of uneven stresses in normal-contact ratio (NCR) gearing system, an enhanced system is desirable to be industrialized. To attain this objective, it is proposed to put on the idea of modifying the correction factor in such a manner that the bending strength of the gearing system is improved. In this work, the correction factor is modified in such a way that the stress in the root region is equalized between the pinion and wheel. This equalization of stresses is carried out by providing a correction factor in three circumstances: in pinion; wheel and both the pinion and the wheel. Henceforth performances of this S+, S0 and S- drives are evaluated in finite element analysis (FEA) and compared for balanced root stresses in parallel shaft spur gearing systems. It is seen that the outcomes gained from the modified drive have enhanced performance than the standard drive.


Sign in / Sign up

Export Citation Format

Share Document