scholarly journals Method of nanosecond triggering for a sealed-off pseudospark switch

2021 ◽  
Vol 2064 (1) ◽  
pp. 012007
Author(s):  
G A Argunov ◽  
N V Landl ◽  
Y D Korolev ◽  
O B Frants ◽  
V G Geyman ◽  
...  

Abstract This paper describes a method of nanosecond triggering for the modified version of the commercially produced pseudospark switch TPI1-10k/50. The switch uses the trigger unit with the auxiliary glow discharge, and the proposed method is based on the principle of the current interception from the trigger unit to the grounded cathode cavity when the trigger pulse arrives. Different electric circuits for triggering have been investigated. In the circuit, where the so-called trigger resistor or the trigger inductance are available, in the whole range of hydrogen operating pressure, the range of the delay time of triggering corresponds to (80–100) ns with a jitter of (3–6) ns. In the electric circuit, where the trigger resistor is shortened, the delay time increases to about (110–140) ns. However, the jitter remains at approximately the same level.

2017 ◽  
Vol 8 ◽  
Author(s):  
Hildegard Urban

Electricity is one of the areas in physics most studied in terms of learning difficulties. Misconceptions are strongly-held, stable cognitive structures, which differ from expert conception and affect how students understand scientific explanations. Therefore, there is a need for tests of conceptual understanding tests which are useful in diagnosing the nature of students’ misconceptions related to simple electric circuits and, in consequence, can serve as a valid and reliable measure of students’ qualitative understanding of simple electric circuits. As ordinary multiple choice tests with one-tier may overestimate the students’ correct as well as wrong answers, two- and three-tier tests were developed by researchers. Although, there is much research related to students’ conceptions in basic electricity, there is a lack of instruments for testing basic electricity concepts of students at grade 7, especially addressing an electric circuit as a system for a simple circuit of resistors and lamps in series. To address this gap, the context of the present study is an extension to the development of an already existing instrument developed by the author for testing electricity concepts of students at grade 7, specifically focusing on only two specific aspects in depth: first, to develop three-tier items for figuring out sequential reasoning, and second, to distinguish between misconceptions and lack of knowledge. The participants of the study included 339 secondary school students from grade 7 to 12 after instruction on electricity. Surprisingly, there are no dependences on students’ misconceptions either according to their gender or to their age. In conclusion, the findings of the study suggest that four items for uncovering students’ sequential reasoning can serve as a valid and reliable measure of students’ qualitative understanding of the systemic character of an electric circuit.


Author(s):  
Jati Zen Ma'ruf

This study is the research of the development of physics education game application. This study has two purposes, namely to (1) developing multimedia for physics learning in the form of a physics education game on direct current electric circuits, (2) knowing the quality of educational game applications that have been produced according to experts, (3)knowing the user's (student's) response to the media of physics learning in the form of educational game applications related to direct current electrical circuit. The development procedure in this study refers to the Luther-Sutopo procedure consisting of the stage of concept, design, material collecting, assembly, testing, and distribution. Data collection techniques in the research in this study using a questionnaire. The research instrument in this study was a validation and assessment sheet which was adapted from the rubric for evaluating C. Stewart's educational game, student response sheets, and the game tester response sheet. Product validation and assessment uses a Likert scale with 4 scales and students' responses use the Guttman scale, while the game tester response sheet uses descriptive analysis. The results of this study are products in the form of simulation physics education game applications in direct current electric circuits, the results of the validation and assessment of material experts and media experts, the educational game application scored 3.8 and 3.3 in a very good category. The results of the user’s (student’s) response to the direct current electric circuit educational game application developed got an average score of 0.97 with the agreed category.


2018 ◽  
Vol 49 (4) ◽  
pp. 503-533
Author(s):  
Ching-Wen Lou ◽  
Chih-Hung He ◽  
Jia-Horng Lin

Textiles can have valuable functions in terms of measurement, detection and communication when they are incorporated into functional electronic devices. However, the additional electric circuits limit the flexibility and extensibility, making the wearers uncomfortable and the manufacturing difficult. Therefore, in this study, conductive elastic knits are made of metallic yarns and expected to be used as wearable electronic textiles. In order to retain the flexibility of knits, a crochet machine with jacquard equipment is used to create knit patterns as electric circuits. Regardless of whether it is single-twisted yarn, double-twisted yarn, single-wrapped yarn, or double-wrapped yarn, the metallic wires can be completely covered in polyester filaments. Variations in twist numbers of conductive yarns or knit patterns are beneficial to the tensile strength with a maximum increment of 14%, and changing twist numbers of conductive yarns or knit patterns have a positive influence on the air permeability with a maximum increment of 24%. According to the results of the electric circuit stability test, using double-covered yarns ensures the knits a stabilized electric circuit regardless of the knit pattern.


2006 ◽  
Vol 15 (04) ◽  
pp. 505-519
Author(s):  
Y. BERKOVICH ◽  
G. GOLAN

The paper deals with electric models applied in the investigation of complex systems, such as transport, economic, and neuron systems. The increasing interest in such systems can be explained by the fact that they are characterized by parallel (collective) means of complex calculation processes, under the influence of inner information processes. Electric models can also be looked upon as original structures for neuron-like systems. The paper puts emphasis on comparison between the electric models suggested by the authors, on the one hand, and the mechanical and thermal models, on the other hand. It has been shown that entropy phenomena, typical for the latter, can be closely compared to those of electric models, which are distinguished by pure electric values. Also, it has been shown that irreversible processes of energy dissipation, e.g., entropy processes in mechanical models, are corresponded to processes of energy concentration, energy transfer, and/or energy exchange in electric models. This enables us to shed a new light on processes in electric circuit, especially those concerning with structural improvements of electric circuitry and their self-organization, meaning a neg-entropic information character of these processes. Models of two economic tasks have been considered, wherein the calculation process is characterized under the influence of these processes. Assumption on the importance of reactive elements such as carriers of neg-entropy in electric circuits was made as well.


2020 ◽  
Vol 3 (1) ◽  
pp. 24-29
Author(s):  
Hassan Adamu Alfaki ◽  
Muhammad Kabir Dauda ◽  
Ahmed Mohammed Gimba ◽  
Mohammed Abdullahi Ahmed

Differential equations are of fundamental importance in Mathematics, Physical Sciences and Engineering Mathematics. Many mathematical relations and physical laws appeared in the form of such equations. This paper reviewed an application of these equations in solving mathematical model on electric circuit problems using the First order linear differential equation. The analytical approached in solving the equations confirmed that solving electric circuits using first order linear ordinary differential equations gives accurate and reliable result. Therefore, the application is of importance and great need. However, complex problems need higher order differential equations, which are nonlinear and have entirely different approach in finding their solutions.


2021 ◽  
Vol 11 (20) ◽  
pp. 9711
Author(s):  
Timofey Shevgunov ◽  
Oksana Guschina ◽  
Yury Kuznetsov

This paper proposes a cyclostationary based approach to power analysis carried out for electric circuits under arbitrary periodic excitation. Instantaneous power is considered to be a particular case of the two-dimensional cross correlation function (CCF) of the voltage across, and current through, an element in the electric circuit. The cyclostationary notation is used for deriving the frequency domain counterpart of CCF—voltage–current cross spectrum correlation function (CSCF). Not only does the latter exhibit the complete representation of voltage–current interaction in the element, but it can be systematically exploited for evaluating all commonly used power measures, including instantaneous power, in the form of Fourier series expansion. Simulation examples, which are given for the parallel resonant circuit excited by the periodic currents expressed as a finite sum of sinusoids and periodic train of pulses with distorted edges, numerically illustrate the components of voltage–current CSCF and the characteristics derived from it. In addition, the generalization of Tellegen’s theorem, suggested in the paper, leads to the immediate formulation of the power conservation law for each CSCF component separately.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012127
Author(s):  
A D Rozenblit ◽  
N A Olekhno ◽  
A A Dmitriev ◽  
P S Seregin ◽  
M A Gorlach

Abstract Recent advances in two-particle topological quantum states demonstrate resilience to geometrical imperfections and hold perspectives for robust quantum computations. In this context, particles with fractional quantum statistics, the so-called anyons, attract especial attention. In particular, topological edge states of anyon pairs in one-dimensional chains of coupled cavities were recently predicted to demonstrate localization at one or another edge of the array depending on details of the quantum statistics. In this paper, propose an equivalent electric circuit serving as a classical emulator of such topological states. Detailed numerical studies of resonances in the circuit fully support theoretical predictions, pointing towards future experimental realizations of anyonic states analogs in electrical circuits.


2019 ◽  
Vol 19 (1) ◽  
pp. 237-248 ◽  
Author(s):  
Luca Cardelli ◽  
Mirco Tribastone ◽  
Max Tschaikowski

Abstract Electric circuits manipulate electric charge and magnetic flux via a small set of discrete components to implement useful functionality over continuous time-varying signals represented by currents and voltages. Much of the same functionality is useful to biological organisms, where it is implemented by a completely different set of discrete components (typically proteins) and signal representations (typically via concentrations). We describe how to take a linear electric circuit and systematically convert it to a chemical reaction network of the same functionality, as a dynamical system. Both the structure and the components of the electric circuit are dissolved in the process, but the resulting chemical network is intelligible. This approach provides access to a large library of well-studied devices, from analog electronics, whose chemical network realization can be compared to natural biochemical networks, or used to engineer synthetic biochemical networks.


2008 ◽  
Vol 22 (01) ◽  
pp. 51-60 ◽  
Author(s):  
F. KHEIRANDISH ◽  
H. PAHLAVANI

The quantum theory for a mesoscopic electric circuit with charge discreteness is investigated. The persistent current on a quantum ring using an algebraic approach have been obtained. The energy spectrum and the persistent current of a quantum LC-design mesoscopic circuit, with a time-dependent external source, have been found.


Sign in / Sign up

Export Citation Format

Share Document