scholarly journals Investigation of a cold atmospheric plasma jet generation in single and multichannel planar devices

2021 ◽  
Vol 2064 (1) ◽  
pp. 012127
Author(s):  
P P Gugin ◽  
D E Zakrevsky ◽  
E V Milakhina

Abstract A plasma source of atmospheric pressure with a planar geometry of the device and an adjustable number of planar discharge channels has been developed. The dependence of the recorded collector current on the amplitude of the applied voltage is investigated. It was found that the current in each of the channels consists of a set of independent current channels whose propagation does not depend on each other.

2021 ◽  
Vol 2100 (1) ◽  
pp. 012020
Author(s):  
I Schweigert ◽  
A Alexandrov ◽  
D Zakrevsky ◽  
E Milakhina ◽  
E Patrakova ◽  
...  

Abstract Cold atmospheric plasma (CAP) jet generated by the plasma source at 2-6 kV ac voltages with frequencies of 10-50 kHz demonstrate the different modes of operation. Depending on the voltage frequency and amplitude, some streamers in the plasma jet are short and decay before they approach the treated surface. In this case, the effect on the viability of cancer cells when exposed to CAP jet strongly depends on the mode of operation of the discharge or, in other words, on how many times the streamers hit the bio-target during the treatment. The effect on different modes on cancer cells A549 viability is reported.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Zhitong Chen ◽  
Richard Obenchain ◽  
Richard E. Wirz

Conventional plasma jets for biomedical applications tend to have several drawbacks, such as high voltages, high gas delivery, large plasma probe volume, and the formation of discharge within the organ. Therefore, it is challenging to employ these jets inside a living organism’s body. Thus, we developed a single-electrode tiny plasma jet and evaluated its use for clinical biomedical applications. We investigated the effect of voltage input and flow rate on the jet length and studied the physical parameters of the plasma jet, including discharge voltage, average gas and subject temperature, and optical emissions via spectroscopy (OES). The interactions between the tiny plasma jet and five subjects (de-ionized (DI) water, metal, cardboard, pork belly, and pork muscle) were studied at distances of 10 mm and 15 mm from the jet nozzle. The results showed that the tiny plasma jet caused no damage or burning of tissues, and the ROS/RNS (reactive oxygen/nitrogen species) intensity increased when the distance was lowered from 15 mm to 10 mm. These initial observations establish the tiny plasma jet device as a potentially useful tool in clinical biomedical applications.


2013 ◽  
Vol 10 (8) ◽  
pp. 706-713 ◽  
Author(s):  
Sander Bekeschus ◽  
Kai Masur ◽  
Julia Kolata ◽  
Kristian Wende ◽  
Anke Schmidt ◽  
...  

2019 ◽  
Vol 47 (11) ◽  
pp. 4848-4860 ◽  
Author(s):  
Donghai Li ◽  
Guiling Li ◽  
Jing Li ◽  
Zhi-Qiang Liu ◽  
Xuman Zhang ◽  
...  

2020 ◽  
Vol 62 (11) ◽  
pp. 2073-2080 ◽  
Author(s):  
K. V. Artem’ev ◽  
N. N. Bogachev ◽  
N. G. Gusein-zade ◽  
T. V. Dolmatov ◽  
L. V. Kolik ◽  
...  

2020 ◽  
Vol 24 (4) ◽  
pp. 1465-1477 ◽  
Author(s):  
Yang Yang ◽  
Miao Zheng ◽  
Yang Yang ◽  
Jing Li ◽  
Yong-Fei Su ◽  
...  

2019 ◽  
Vol 8 (11) ◽  
pp. 1930 ◽  
Author(s):  
Bih-Show Lou ◽  
Chih-Ho Lai ◽  
Teng-Ping Chu ◽  
Jang-Hsing Hsieh ◽  
Chun-Ming Chen ◽  
...  

Using the Taguchi method to narrow experimental parameters, the antimicrobial efficiency of a cold atmospheric plasma jet (CAPJ) treatment was investigated. An L9 array with four parameters of CAPJ treatments, including the application voltage, CAPJ-sample distance, argon (Ar) gas flow rate, and CAPJ treatment time, were applied to examine the antimicrobial activity against Escherichia coli (E. coli). CAPJ treatment time was found to be the most influential parameter in its antimicrobial ability by evaluation of signal to noise ratios and analysis of variance. 100% bactericidal activity was achieved under the optimal bactericidal activity parameters including the application voltage of 8.5 kV, CAPJ-sample distance of 10 mm, Ar gas flow rate of 500 sccm, and CAPJ treatment time of 300 s, which confirms the efficacy of the Taguchi method in this design. In terms of the mechanism of CAPJ’s antimicrobial ability, the intensity of hydroxyl radical produced by CAPJ positively correlated to its antimicrobial efficiency. The CAPJ antimicrobial efficiency was further evaluated by both DNA double-strand breaks analysis and scanning electron microscopy examination of CAPJ treated bacteria. CAPJ destroyed the cell wall of E. coli and further damaged its DNA structure, thus leading to successful killing of bacteria. This study suggests that optimal conditions of CPAJ can provide effective antimicrobial activity and may be grounds for a novel approach for eradicating bacterial infections.


2020 ◽  
Vol 17-18 ◽  
pp. 100098 ◽  
Author(s):  
Mohamed Fofana ◽  
Julio Buñay ◽  
Florian Judée ◽  
Silvère Baron ◽  
Sébastien Menecier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document