scholarly journals Research on the Structure of Distribution Network Voltage Smart Grid Information System Based On Flexible DC

2021 ◽  
Vol 2066 (1) ◽  
pp. 012037
Author(s):  
Jingwen Yang ◽  
Zhongxiao Chen ◽  
Gang Qin ◽  
Jiarui Chen ◽  
Kaiqing Fu

Abstract Since the concept of smart grid was defined, it has aroused the interest of many researchers, and many countries have also regarded smart grid as a key research project. Because it is the field of power grid research in the future, the structure of the smart grid becomes more complex with the deepening of research, the scale becomes larger, and the data contained in the system is bound to increase rapidly. Flexible DC grid technology has the characteristics of high reliability, good fault tolerance and good scalability, and can be used to solve some problems encountered in the application of smart grids. Based on the structure of the smart grid information system, this paper studies the characteristics of the smart grid data, as well as some safety issues encountered in the data, applies flexible DC power distribution technology, designs a new smart grid equipment management architecture, and System implementation was carried out. Through experimental verification, the new architecture proposed in this paper has high feasibility and safety. Finally, the realization of the management system function based on the new equipment management architecture and the analysis of the system function effect are given.

2022 ◽  
pp. 1335-1359
Author(s):  
Sadeeb Simon Ottenburger ◽  
Thomas Münzberg ◽  
Misha Strittmatter

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures. Thus, topology massively codetermines the degree of urban resilience, i.e. different topologies enable different strategies of power distribution. Therefore, this article introduces a concept of criticality adapted to a power system relying on an advanced metering infrastructure. The authors propose a two-stage operationalization of this concept that refers to the design phase of a smart grid and its operation mode, targeting at an urban resilient power flow during power shortage.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1817 ◽  
Author(s):  
Gisliany Alves ◽  
Danielle Marques ◽  
Ivanovitch Silva ◽  
Luiz Affonso Guedes ◽  
Maria da Guia da Silva

Smart grids are a new trend in electric power distribution, which has been guiding the digitization of electric ecosystems. These smart networks are continually being introduced in order to improve the dependability (reliability, availability) and efficiency of power grid systems. However, smart grids are often complex, composed of heterogeneous components (intelligent automation systems, Information and Communication Technologies (ICT) control systems, power systems, smart metering systems, and others). Additionally, they are organized under a hierarchical topology infrastructure demanded by priority-based services, resulting in a costly modeling and evaluation of their dependability requirements. This work explores smart grid modeling as a graph in order to propose a methodology for dependability evaluation. The methodology is based on Fault Tree formalism, where the top event is generated automatically and encompasses the hierarchical infrastructure, redundant features, load priorities, and failure and repair distribution rates of all components of a smart grid. The methodology is suitable to be applied in early design stages, making possible to evaluate instantaneous and average measurements of reliability and availability, as well as to identify eventual critical regions and components of smart grid. The study of a specific use-case of low-voltage distribution network is used for validation purposes.


Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3310 ◽  
Author(s):  
Md. Nazmul Hasan ◽  
Rafia Nishat Toma ◽  
Abdullah-Al Nahid ◽  
M M Manjurul Islam ◽  
Jong-Myon Kim

Among an electricity provider’s non-technical losses, electricity theft has the most severe and dangerous effects. Fraudulent electricity consumption decreases the supply quality, increases generation load, causes legitimate consumers to pay excessive electricity bills, and affects the overall economy. The adaptation of smart grids can significantly reduce this loss through data analysis techniques. The smart grid infrastructure generates a massive amount of data, including the power consumption of individual users. Utilizing this data, machine learning and deep learning techniques can accurately identify electricity theft users. In this paper, an electricity theft detection system is proposed based on a combination of a convolutional neural network (CNN) and a long short-term memory (LSTM) architecture. CNN is a widely used technique that automates feature extraction and the classification process. Since the power consumption signature is time-series data, we were led to build a CNN-based LSTM (CNN-LSTM) model for smart grid data classification. In this work, a novel data pre-processing algorithm was also implemented to compute the missing instances in the dataset, based on the local values relative to the missing data point. Furthermore, in this dataset, the count of electricity theft users was relatively low, which could have made the model inefficient at identifying theft users. This class imbalance scenario was addressed through synthetic data generation. Finally, the results obtained indicate the proposed scheme can classify both the majority class (normal users) and the minority class (electricity theft users) with good accuracy.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Mohammad Hasan Ansari ◽  
Vahid Tabatab Vakili ◽  
Behnam Bahrak

AbstractWith the rapid development of smart grids and increasing data collected in these networks, analyzing this massive data for applications such as marketing, cyber-security, and performance analysis, has gained popularity. This paper focuses on analysis and performance evaluation of big data frameworks that are proposed for handling smart grid data. Since obtaining large amounts of smart grid data is difficult due to privacy concerns, we propose and implement a large scale smart grid data generator to produce massive data under conditions similar to those in real smart grids. We use four open source big data frameworks namely Hadoop-Hbase, Cassandra, Elasticsearch, and MongoDB, in our implementation. Finally, we evaluate the performance of different frameworks on smart grid big data and present a performance benchmark that includes common data analysis techniques on smart grid data.


2018 ◽  
Vol 8 (1) ◽  
pp. 182-192
Author(s):  
Mike Mekkanen ◽  
Kimmo Kauhaniemi

Abstract This paper presents a novel Loss of Mains (LoM) protection method based on IEC 61850 Manufacturing Messages Specification (MMS) protocol over wireless Global System for Mobile Communication (GSM) based access point name (APN) mechanism. LoM or anti islanding protection is a key requirement in modern power distribution grids where there is significant amount of distributed energy resources (DER). The future Smart Grids are based on extensive communication capabilities and thus the communication based LoM approaches will also become dominant. The IEC 61850 standard based systems are gaining ground in the substation communication, and therefore, it is natural to expand this technology deeper into the distribution network. Using this standard for LoM protection, also enables some advanced approaches utilizing large variety of information available in the Smart Grid. There is a specific part of the standard, IEC 61850-7-420, which defines logical nodes (LNs) suitable for this purpose; but, there are no available devices applying this part of the standard yet. In this research, a light-weight implementation of IEDs (Intelligent Electronic Devices) is developed using a low-cost open microcontroller platform, Beagle Bone, and an open source software. Using this platform, a wireless LoM solution based on IEC 61850 MMS protocol has been developed and demonstrated. This paper introduces object modelling according to IEC 61850-7-420 defined LNs and an implementation applying direct client server MMS based communication between lightweight IEDs. The performance of the wireless application using the developed platform is demonstrated by measuring the message latencies. In this paper, a novel LoM protection concept is proposed based on the standardized communication solution brought by IEC 61850 and specific LNs for DERs defined in IEC 61850-7-420. A light-weight implementation of an IEC 61850 based IED is developed in order to reduce large overhead information and complexity of the standard. In addition to LoM function, the developed solution has the ability to monitor DERs status. The available monitoring information can be shared among various distribution management systems (DMS), enabling distributed decision approach for various purposes.


2021 ◽  
Vol 2078 (1) ◽  
pp. 012077
Author(s):  
Dongwu ◽  
Zhangtao ◽  
Chenxiaojin ◽  
Zhuhailong ◽  
Pengdili

Abstract With the continuous construction and development of domestic power grids, the state has put forward many effective strategies to achieve the effectiveness and durability of energy supply, in order to ensure the stable operation of the power grid and the construction of smart grids. One of the most important components of the smart grid is various communication technologies. 5G network slicing is a typical application of the smart grid, because the wide-area distributed grid has greater requirements for low latency, high reliability and security. And 5G network slicing has the ability to meet its requirements. This paper analyzes the principle of 5G network slicing, analyzes the end-to-end isolation scheme of network slicing and the current smart grid slicing business model and existing problems, and proposes an effective solution for building a smart 5G slicing network.


2015 ◽  
Vol 16 (2) ◽  
pp. 232
Author(s):  
Raja Masood Larik ◽  
Mohd Wazir Mustafa

<span style="line-height: 107%; font-family: 'Arial',sans-serif; font-size: 9pt; mso-fareast-font-family: Calibri; mso-fareast-theme-font: minor-latin; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA;" lang="EN-US">Recently, the debate has been going on about the role of power plus distribution systems, its technologies for future smart grids in power systems. The emerging of new technologies in smart grid and power distribution systems provide a significant change in terms of reduction the commercial and technical losses, improve the rationalization of electricity tariff. The new technologies in smart grid systems have different capabilities to increase the technological efficiency in power distribution systems. These new technologies are the foreseeable solution to address the power system issues. This paper gives a brief detail of new technologies in smart grid systems for its power distribution systems, benefits and recent challenges. The paper provides a brief detail for new researchers and engineers about new technologies in smart grid systems and how to change traditional distribution systems into new smart systems.</span>


Author(s):  
Sadeeb Simon Ottenburger ◽  
Thomas Münzberg ◽  
Misha Strittmatter

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures. Thus, topology massively codetermines the degree of urban resilience, i.e. different topologies enable different strategies of power distribution. Therefore, this article introduces a concept of criticality adapted to a power system relying on an advanced metering infrastructure. The authors propose a two-stage operationalization of this concept that refers to the design phase of a smart grid and its operation mode, targeting at an urban resilient power flow during power shortage.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2590
Author(s):  
R. Claudio S. Gomes ◽  
Carlos Costa ◽  
Jose Silva ◽  
Jose Sicchar

The current electrical system is transitioning towards a new technological model called the smart grid. The transition duration between the traditional Electric Power System (EPS) and the full smart grid depends on well-designed strategic plans, implementing transition models that are as close to smart grids as possible, based on the processes and technological resources available at the time, but always considering their economic feasibility, without which no solution thrives. In this article, we present a method for convergence of the traditional power distribution grid to the smart grid paradigm by retrofitting the legacy circuits that compose this grid. Our results indicate that the application of such a method, through a distributed system platform with integrated technological resources added to the legacy infrastructure, converts these passive grids into intelligent circuits capable of supporting the implementation of a smart grid with a broad scope of functionalities. Based on a novel retrofitting strategy, the solution is free from the cost of replacing or significantly modifying the legacy infrastructure, as verified in deploying other currently available solutions.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
S. Bohn ◽  
M. Agsten ◽  
O. Waldhorst ◽  
A. Mitschele-Thiel ◽  
D. Westermann ◽  
...  

Growing shortage of fossil resources and an increasing demand of individual mobility worldwide require technology alternatives to existing mobility solutions. Electric vehicles (EVs) as one possible solution have moved into the focus of research and development. To maximize the positive environmental effect of EVs, it is proposed to charge them with respect to the availability of renewable energies. As the number of EVs will grow in the near future, their impact on the power distribution grid is no longer neglectable. Related research shows that unmanaged charging of EVs could result in overload situations or voltage instabilities. To overcome this, methods are proposed to manage the charging process holistically. Herein EVs become substantial elements of intelligent power grids (Smart Grids). As of today, research in the area of Smart Grids focuses mainly on either energy aspects or communication aspects while neglecting the interoperability of energy and communication related aspects. In this paper, an insight into Information and Communication Technology (ICT) aspects with respect to Managed Charging of EVs in Smart Grid environments will be given. Based on the use case of Managed Charging, requirements will be analyzed, results will be derived, and ICT solutions will be proposed with a set of recommendations for Smart Grid architectures.


Sign in / Sign up

Export Citation Format

Share Document