scholarly journals Mathematical modeling of a new way of renal artery denervation

2021 ◽  
Vol 2090 (1) ◽  
pp. 012005
Author(s):  
VN Makarov

Abstract The aim of the work is to create a new design of electrodes for renal denervation. In standard RFA systems, monopolar heating is most often used, by introducing an RF electrode inside the vessel. This approach leads to the need to interrupt blood flow during the procedure. In addition, the monopolar mode of operation requires the contact of the inserted electrode with the vessel walls, which greatly complicates the design of the electrode system. Point contact of the electrode system with the vessel can damage the inner walls of the artery. It is proposed to use a multi-electrode structure for external stimulation by creating a hollow cylindrical thermal field for effective treatment. It has been established that external heating will create the required thermal field without direct contact with the walls of the artery. The external arrangement of the electrodes makes it possible to regulate the temperature on the external surface of the vessel. With such heating, it is not necessary to block the blood flow, and due to the symmetry of the arrangement, continuous heating can be obtained without moving the electrodes during the procedure. Mathematical modeling confirms the possibility of vascular denervation during external heating.

2022 ◽  
Vol 1049 ◽  
pp. 53-61
Author(s):  
Valeriy Lykhoshva ◽  
Dmitry Glushkov ◽  
Elena Reintal ◽  
Valeriy V. Savin ◽  
Ludmila Alexeyevna Savina ◽  
...  

The hydrodynamic and thermal state in the contact zone of the layers of a bimetallic product obtained by pouring liquid iron onto a solid steel billet, which changes in time and is responsible for the strength of the diffusion joint and the geometric parameters of the transition layer, has been investigated. Simplified analytical dependences, mathematical modeling data and experimental results of the liquid phase existence time in the contact zone based on research of the melt velocities during pouring and changes in the thermal field are presented. It is shown that simplified calculations data coincide in order and are close in values ​​to the calculations of mathematical modeling and experimental data, which makes it possible to use them for preliminary rough estimates by technologists and metallurgists.


Author(s):  
Julia Arciero ◽  
Lucia Carichino ◽  
Simone Cassani ◽  
Giovanna Guidoboni

2019 ◽  
Vol 30 (4) ◽  
pp. 364-377
Author(s):  
T. R. Zhaleev ◽  
V. A. Kubyshkin ◽  
S. I. Mukhin ◽  
A. F. Rubina ◽  
A. B. Khrulenko

2014 ◽  
Vol 07 (06) ◽  
pp. 1450068 ◽  
Author(s):  
Noreen Sher Akbar

This research is concerned with the mathematical modeling and analysis of blood flow in a tapered artery with stenosis. The analysis has been carried out in the presence of heat and mass transfer. Constitutive equation of Carreau fluid has been invoked in the mathematical formulation. The representation of blood flow is considered through an axially non-symmetrical but radially symmetric stenosis. Symmetry of the distribution of the wall shearing stress and resistive impedance and their growth with the developing stenosis is given due attention. Solutions have been obtained for the velocity, temperature, concentration, resistance impedance, wall shear stress and shearing stress at the stenosis throat. Graphical illustrations associated with the tapered arteries namely converging, diverging and non-tapered arteries are examined for different parameters of interest. Streamlines have been plotted and discussed.


Biorheology ◽  
1995 ◽  
Vol 32 (2-3) ◽  
pp. 167-168
Author(s):  
A POPEL ◽  
B DAS

2011 ◽  
Vol 04 (02) ◽  
pp. 207-225 ◽  
Author(s):  
J. C. MISRA ◽  
A. SINHA ◽  
G. C. SHIT

In this paper, a mathematical model has been developed for studying blood flow through a porous vessel with a pair of stenoses under the action of an externally applied magnetic field. Blood flowing through the artery is considered to be Newtonian. This model is consistent with the principles of ferro-hydrodynamics and magnetohydrodynamics. Expressions for the velocity profile, volumetric flow rate, wall shear stress and pressure gradient have been derived analytically under the purview of the model. The above said quantities are computed for a specific set of values of the different parameters involved in the model analysis. This serves as an illustration of the validity of the mathematical model developed here. The results estimated on the basis of the computation are presented graphically. The obtained results for different values of the parameters involved in the problem under consideration, show that the flow is appreciably influenced by the presence of magnetic field and the rise in the hematocrit level.


2016 ◽  
Vol 12 (05) ◽  
pp. 80-88
Author(s):  
J. P. Singh ◽  
A. K. Agrawal ◽  
V. Upadhyay ◽  
P. N. Pandey

Sign in / Sign up

Export Citation Format

Share Document