scholarly journals FDS simulation of smoke backlayering in emergency lay-by of a road tunnel with longitudinal ventilation

2021 ◽  
Vol 2090 (1) ◽  
pp. 012100
Author(s):  
P Weisenpacher ◽  
J Glasa ◽  
L Valasek ◽  
T Kubisova

Abstract This paper investigates smoke movement and its stratification in a lay-by of a 900 m long road tunnel by computer simulation using Fire Dynamics Simulator. The lay-by is located upstream of the fire in its vicinity. The influence of lay-by geometry on smoke spread is evaluated by comparison with a fictional tunnel without lay-by. Several fire scenarios with various tunnel slopes and heat release rates of fire in the tunnels without and with the lay-by are considered. The most significant breaking of smoke stratification and decrease of visibility in the area of the lay-by can be observed in the case of zero slope tunnel for more intensive fires with significant length of backlayering. Several other features of smoke spread in the lay-by are analysed as well. The parallel calculations were performed on a high-performance computer cluster.

2018 ◽  
Vol 16 ◽  
pp. 02002
Author(s):  
Peter Weisenpacher ◽  
Jan Glasa ◽  
Lukas Valasek

Jet fan ventilation strategy in case of fire in bi-directional road tunnels is focused on maintaining smoke stratification. There are several factors influencing stratification under specific conditions. In this paper smoke movement during a 5 MW fire in a 600 m long road tunnel is studied by computer simulation and the influence of slope and external temperature on smoke stratification is analysed. Calculations were performed on a high performance computer cluster using parallel version of Fire Dynamics Simulator. Smoke stratification upstream of the fire is maintained in every simulation scenario with the exception of declivous tunnel, in which buoyancy intensifies backlayering. The behaviour of the smoke movement downstream of the fire is more complex. In the case of horizontal tunnel the stratification is not maintained in the vicinity of the fire and region with untenable conditions expands downstream. In the tunnel with slope of -2° this expansion is accelerated, while in the tunnel with slope of 2° untenable conditions spread in opposite direction. The influence of exterior temperature higher than temperature inside the tunnel is relatively weak in horizontal tunnels; however, it becomes very important in sloping tunnels, especially downstream of the fire.


Author(s):  
Felipe Vittori ◽  
Luis Rojas-Solo´rzano ◽  
Armando J. Blanco ◽  
Rafael Urbina

This work deals with the numerical (CFD) analysis of the smoke propagation during fires within closed environments. It is evaluated the capacity of the emergency ventilation system in controlling the smoke propagation and minimizing the deadly impact of an eventual fire in a wagon within the Metro de Caracas subway tunnel on the passengers safety. For the study, it was chosen the tunnel section between Teatros and Nuevo Circo subway stations, which consists of two parallel independent twin tunnels, connected through a transverse passage. The tunnels are provided by a longitudinal ventilation system, integrated by a set of reversible fans located at both ends of the tunnels. Three stages were considered in the study: (a) Model set up; (b) Mesh sensitivity analysis; (c) Validation of the physical-numerical parameters to be used in the numerical model; and (d) Simulation of fire scenarios in Metro de Caracas subway stations. Stages (b)–(c), aimed to testing and calibrating the CFD tool (ANSYS-CFX10™), focused on reproducing experimental data from Vauquelin and Me´gret [1], who studied the smoke propagation in a fire within a 1:20 scale road tunnel. Stage (d) critical scenarios were established via a preliminary discussion with safety experts from Metro de Caracas, in order to reduce the computer memory and the number of simulations to be performed. The analyses assessed the reliability of escape routes and alternative paths for the evacuation of passengers. Additionally, the smoke front movement was particularly computed, as a function of time, in order to determine the possible presence of the “backlayering” phenomenon [5]. Results demonstrate the strengths and weaknesses of the current ventilation system in the event of a fire in the subway tunnel, and suggest new strategies to address this potentially lethal event to minimize the risks for passengers.


2011 ◽  
Vol 402 ◽  
pp. 864-867
Author(s):  
Xiao Yang Liu ◽  
Jing Yan Zhang ◽  
Yan Feng Li ◽  
Li Li Zhang ◽  
Jin Feng Yuan

In order to meet the need of the study on the tunnel fire safety system, taking the tunnel laboratory bench in the key laboratory of the university of science and technology of China as the object, this paper does a scale model experiment on the tunnel fire, and uses the Fire Dynamics Simulator(FDS)software to simulate fire smoke layer velocity under different longitudinal ventilation control, by comparing the experimental and simulation results, this paper not only gives the variation law of the tunnel fire smoke layer velocity under different longitudinal ventilation speed, but also proposes the concept of the smoke stratification critical wind speed , which will provide some references for the road tunnel fire control, rescue and evacuation.


2016 ◽  
Vol 685 ◽  
pp. 943-947 ◽  
Author(s):  
Roman Mesheryakov ◽  
Alexander Moiseev ◽  
Anton Demin ◽  
Vadim Dorofeev ◽  
Vasily Sorokin

The paper is devoted to the simulation of queueing networks on high performance computer clusters. The objective is to develop a mathematical model of queueing network and simulation approach to the modelling of the general network functionality, as well as to provide a software implementation on a high-performance computer cluster. The simulation is based on a discrete-event approach, object oriented programming, and MPI technology. The model of the queueing networks simulation system was developed as an application that allows a user to simulate networks of rather free configuration. The experiments on a high performance computer cluster emphasize the high efficiency of parallel computing.


2021 ◽  
Author(s):  
Depeng Zuo ◽  
Guangyuan Kan ◽  
Hongquan Sun ◽  
Hongbin Zhang ◽  
Ke Liang

Abstract. The Generalized Likelihood Uncertainty Estimation (GLUE) method has been thrived for decades, huge number of applications in the field of hydrological model have proved its effectiveness in uncertainty and parameter estimation. However, for many years, the poor computational efficiency of GLUE hampers its further applications. A feasible way to solve this problem is the integration of modern CPU-GPU hybrid high performance computer cluster technology to accelerate the traditional GLUE method. In this study, we developed a CPU-GPU hybrid computer cluster-based highly parallel large-scale GLUE method to improve its computational efficiency. The Intel Xeon multi-core CPU and NVIDIA Tesla many-core GPU were adopted in this study. The source code was developed by using the MPICH2, C++ with OpenMP 2.0, and CUDA 6.5. The parallel GLUE method was tested by a widely-used hydrological model (the Xinanjiang model) to conduct performance and scalability investigation. Comparison results indicated that the parallel GLUE method outperformed the traditional serial method and have good application prospect on super computer clusters such as the ORNL Summit and Sierra of the TOP500 super computers around the world.


Author(s):  
Lee D. Peachey ◽  
Lou Fodor ◽  
John C. Haselgrove ◽  
Stanley M. Dunn ◽  
Junqing Huang

Stereo pairs of electron microscope images provide valuable visual impressions of the three-dimensional nature of specimens, including biological objects. Beyond this one seeks quantitatively accurate models and measurements of the three dimensional positions and sizes of structures in the specimen. In our laboratory, we have sought to combine high resolution video cameras with high performance computer graphics systems to improve both the ease of building 3D reconstructions and the accuracy of 3D measurements, by using multiple tilt images of the same specimen tilted over a wider range of angles than can be viewed stereoscopically. Ultimately we also wish to automate the reconstruction and measurement process, and have initiated work in that direction.Figure 1 is a stereo pair of 400 kV images from a 1 micrometer thick transverse section of frog skeletal muscle stained with the Golgi stain. This stain selectively increases the density of the transverse tubular network in these muscle cells, and it is this network that we reconstruct in this example.


Sign in / Sign up

Export Citation Format

Share Document