scholarly journals High-speed PIV investigation of the flow created by the model rotor in hover mode

2021 ◽  
Vol 2127 (1) ◽  
pp. 012009
Author(s):  
V F Kopiev ◽  
M Yu Zaytsev ◽  
V A Kopiev

Abstract A study of the instantaneous and average velocity and vorticity fields in the flow created by the model helicopter rotor in the hover mode was carried out. The velocity fields of the flow generated by the model rotor were obtained by a two-dimensional TR PIV system, which provided two components of the velocity vector in the diagnostic light plane. The processing of the obtained raw images was carried out using a two-frame algorithm with adaptive interrogation windows. The experiments carried out have shown the possibility of using the PIV technique to visualize the tip vortex structure descending from the rotor blade. This possibility seems to be especially interesting as one of the means of validation of the numerical methods for calculating rotor aerodynamics and acoustics.

Author(s):  
Purvic Patel ◽  
Yunchao Yang ◽  
Gecheng Zha

Abstract This paper utilizes the Improved Delayed Detached Eddy Simulation (IDDES) to investigate the non-synchronous vibration (NSV) mechanism of a 1.5 stage high-speed axial compressor. The NSV occurs at a part speed in the rig test. A low diffusion E-CUSP approximate Riemann solver with a third order Weighted Essentially Non-Oscillating (WENO) scheme for the inviscid flux and a second order central differencing scheme for the viscous flux are employed to solve the 3D time accurate Navier-Stokes equations. The fully conservative sliding boundary condition is used to preserve the wake-propagation. The aerodynamic instability in the tip region induces two alternating low pressure regions near the leading and the trailing edge on the suction side of the rotor blade. It is observed that the circumferential tip vortex motion in the rotor passage above 75 % span and its coupling forces cause NSV at the operating speed. This instability moves in the counter-rotating direction in the rotational frame. The NSV results using URANS simulation is also presented for comparison. The predicted frequency with the IDDES and URANS using rigid blades agrees well with the measured frequency in the rig test. In addition to the NSV, the IDDES solver also captures the dominant engine order frequencies. The tip flow structures show the vortex filament with one end on the suction side of the rotor blade and other side terminating on the casing or the pressure side of the rotor blade.


AIAA Journal ◽  
2004 ◽  
Vol 42 (3) ◽  
pp. 524-535 ◽  
Author(s):  
Yong Oun Han ◽  
J. Gordon Leishman

Author(s):  
Shigeki Nagaya ◽  
Risa Kimoto ◽  
Kenji Naganuma ◽  
Takayuki Mori

Experimental study on tip vortex cavitation (TVC) was carried out for elliptical hydrofoils with various chord lengths. The purpose of the experiment was to clarify the influences of Reynolds number and water quality on tip vortex cavitation. Experiments were made in a large cavitation tunnel of the Naval Systems Research Center, TRDI/Ministry of Defense Japan. The elliptical hydrofoils tested were NACA 0012 cross section with chord lengths of 500mm, 250mm and 50mm. Reynolds number based on hydrofoil chord length was 2×105 < ReC < 7.4×106. Water quality of the tunnel was characterized by air content and nuclei distribution. Air content of the tunnel was varied between 30% and 80%. Nuclei distribution was measured by a cavitation susceptibility meter (CSM) with center-body venturi. Cavitation inception was determined from high speed video observation. A standard formula, (σL/σS) = (ReL/ReS)n, was applied for the scaling. In the present study, exponent of the scaling law n was found to be 0.2 < n < 0.4. High speed video observation showed that the process of the TVC inception strongly depends on water quality. In the experiments, unsteady behaviors of TVC were also investigated. Strong interactions between sheet cavitation and TVC were observed.


Author(s):  
Alberto Serena ◽  
Lars E. Bakken

The tip leakage flow affects turbomachines performance generating losses and reducing the effective blading; in addition, unsteady phenomena arise, negatively influencing the machine stability. In this paper, an overview of the existing models is presented. Local measurements of the pressure pulsations, visual flow observations and high quality video recordings from a high speed camera are performed in a novel pump laboratory, which provides the desired visualization of the rotating channels, and allows to study the fluctuating and intermittent nature of this phenomenon, and detect any asymmetry among the channels. A detailed comparison of the vortex tip structure for various tip clearances and with a whole set of numerical simulations finally completes the analysis. The three main focus areas are: tip vortex location, structure and evolution, performance comparison between shrouded and open impeller, at different tip clearance sizes, and study of the rotating instabilities.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Xiaohua Liu ◽  
Tobias Willeke ◽  
Florian Herbst ◽  
Jun Yang ◽  
Joerg Seume

A novel theoretical model of the internal flow field in multistage axial compressors based on an eigenvalue approach is developed, in order to predict the onset of acoustic resonance in aircraft engines. Using an example high-speed four-stage compressor, it is shown that one of the resultant frequencies is in excellent agreement with the experimental data in terms of acoustic resonance. On the basis of the computed natural frequency of the whole compression system and the measured spanwise distribution of static pressure, the location of the acoustic excitation source can be found in the third stage. Unsteady flow simulations of the full annulus of this stage reveal two criteria for acoustic excitation at the rotor-blade tip, reversed flow near the suction surface and flow impingement on the pressure surface. Additionally, a fast Fourier transform of the unsteady pressure field at the upper rotor-blade span verifies the existence of the computed unstable frequency of the oscillating tip leakage flow. Using this novel theory, which combines a theoretical calculation of flow-instability frequency of the global system with the computational simulation of a single stage, the onset mechanism and location of the excitation source of acoustic resonance in multistage turbomachinery can be explained at acceptable computational cost.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Alexandre Capitao Patrao ◽  
Tomas Grönstedt ◽  
Anders Lundbladh ◽  
Gonzalo Montero Villar

The Boxprop is a novel, double-bladed, tip-joined propeller for high-speed flight. The concept draws inspiration from the box wing concept and could potentially decrease tip vortex strength compared with conventional propeller blades. Early Boxprop designs experienced significant amounts of blade interference. By performing a wake analysis and quantifying the various losses of the flow, it could be seen that these Boxprop designs produced 45% more swirl than a conventional reference blade. The reason for this was the proximity of the Boxprop blade halves to each other, which prevented the Boxprop from achieving the required aerodynamic loading on the outer parts of the blade. This paper presents an aerodynamic optimization of a 6-bladed Boxprop aiming at maximizing efficiency and thrust at cruise. A geometric parametrization has been adopted which decreases interference by allowing the blade halves to be swept in opposite directions. Compared with an earlier equal-thrust Boxprop design, the optimized design features a 7% percentage point increase in propeller efficiency and a lower amount of swirl and entropy generation. A vortex-like structure has also appeared downstream of the optimized Boxprop, but with two key differences relative to conventional propellers. (1) Its formation differs from a traditional tip vortex and (2) it is 46% weaker than the tip vortex of an optimized 12-bladed conventional propeller.


2014 ◽  
Vol 136 (6) ◽  
Author(s):  
Ravichandra Srinivasan ◽  
Sharath S. Girimaji

Accurate simulation of the fuel-air mixing environment is crucial for high-fidelity scramjet calculations. We compute the velocity fields of jet into supersonic freestream flow and cavity flow typical of scramjet flame-holding applications at different scale resolutions using the partially-averaged Navier–Stokes (PANS) method. We present a sequence of variable resolution computations to demonstrate the potential of PANS method for high-speed mixing environment calculations.


2012 ◽  
Vol 178-181 ◽  
pp. 429-432
Author(s):  
Y. L. Liu ◽  
B. Lv ◽  
W.L. Wei

In this paper, the flow structure of the oxidation ditch was studied using numerical simulation method and different submerged depth of aeration impellers. The computed velocity fields were analyzed, which shows that under the same conditions, and by using the optimal submerged depth the average velocity of the flow in oxidation ditch is increased and the velocity near-bottom has increased significantly. The results of comparisons show that the velocity distribution is more uniform along the depth direction, and that the flow velocity distribution structure can prevent sludge from settling in the oxidation ditch processing system at the submergence ratio called the optimal submergence ratio, which helps to improve the efficiency of oxidation ditch sewage treatment system.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Nishad G. Sohoni ◽  
Cesare A. Hall ◽  
Anthony B. Parry

The aerodynamic impact of installing a horizontal pylon in front of a contra-rotating open rotor engine, at take-off, was studied. The unsteady interactions of the pylon's wake and potential field with the rotor blades were predicted by full-annulus URANS CFD calculations at 0 deg and 12 deg angle of attack (AoA). Two pylon configurations were studied: one where the front rotor blades move down behind the pylon (DBP), and one where they move up behind the pylon (UBP). When operating at 12 deg AoA, the UBP orientation was shown to reduce the rear rotor tip vortex sizes and separated flow regions, whereas the front rotor wake and vortex sizes were increased. In contrast, the DBP orientation was found to reduce the incidence variations onto the front rotor, leading to smaller wakes and vortices. The engine flow was also time-averaged, and the variation in work done on average midspan streamlines was shown to depend strongly on variation in incidence, along with a smaller contribution related to change of radius.


Sign in / Sign up

Export Citation Format

Share Document